COPS”

COP800 Basic Family User’s Manual

Customer Order Number COP8-820FAM-MAN
Publication Number 420410703-001D
February 1995

REVISION

A

B1

Q

REVISION RECORD

RELEASE DATE

04/87

10/88

03/89

(=)
&
<

£

02/95

SUMMARY OF CHANGE

First Release.

COPS™ COP820C/COP840C

User's Manual

NSC Publication Number 420410703-001.

Modified the program store memory section,
corrected the hex and binary information for
the load B pointer and the return from sub-
routine, and modified the description of sub-
tract with carry. Incorporated new

documentation standards where applicable.

Name change. MOLE changed to microcon-
troller development system within text.

Reformatted and updated entire manual.

Updated appendices A & B.

ii

PREFACE

The COP800 family of 8-bit microcontrollers is ideally suited to embedded control appli-
cations such as keyboard interfaces, electronic cordless telephones, home applications,
and ABS systems. The design of this family takes advantage of National Semiconductor's
M2CMOS™ manufacturing technology, providing a useful combination of high perfor-
mance, low power consumption, and reasonable cost. The rich instruction set and flexible
addressing modes of the COP800 controllers contribute to their high performance and
code efficiency.

This manual describes the features, architecture, instruction set, and usage of the
COP800 microcontrollers. The first eight chapters describe the general features found in
all family members. Later chapters describe the individual family members and their
specific features. The following specific devices are covered:

e (COP820/840/880
e COP8620/8640

e COP820CJ

s COP8780

Chapter 1, OVERVIEW, provides a general overview of COP800 family with specific fea-
ture comparisons.

Chapter 2, ARCHITECTURE, describes the overall architecture of the COP800 micro-
controller, including the CPU core, registers, memory organization, reset operation, and
clock options.

Chapter 3, INTERRUPTS, describes the device interrupts.
Chapter 4, TIMER, describes the on-chip timer and its various operating modes.

Chapter 5, MICROWIRE/PLUS, describes the microcontroller’s MICROWIRE/PLUS se-
rial interface and its operating modes.

Chapter 6, POWER SAVE MODE, describes an operating mode in which the microcon-
troller is halted, reducing power consumption almost to zero while maintaining the pro-
cessor status and all register contents.

Chapter 7, INPUT/OUTPUT, describes the input/output ports of the microcontroller and
how they are used.

Chapter 8, INSTRUCTION SET, describes the instruction set of the COP800 microcon-
trollers, including detailed descriptions of each instruction.

COPS, MICROWIRE/PLUS and M>CMOS are trademarks of National Semiconductor Corporation.
TRI-STATE is a registered trademark of National Semiconductor Corporation.

iii

Chapters 9, 10, 11, and 12 describe the specific features of the COP820/840/880,
COP8620/8640, COP820CJ, and COP8780 family members, respectively.

Chapter 13, APPLICATION HINTS, contains COP800 application information.

The Appendices cover hardware development systems, emulation devices, and device
electrical characterization data.

Additional information on individual COP800 family members is available from their re-
spective data sheets.

The information contained in this manual is for reference only and is subject to change
without notice.

No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.

iv

CONTENTS

Chapter 1

1.1
1.2
1.3

Chapter 2

2.1
2.2
2.3

2.4

2.5

2.6
2.7

Chapter 3
3.1
3.2
3.3

3.4

Chapter 4

41
4.2
4.3
4.4

OVERVIEW
INTRODUCTIONot e e e e e et et 1-1
BASIC FEATURES e e 1-1
DEVICE SPECIFICFEATURES.o 1-2
ARCHITECTURE
INTRODUCTION e e ettt et e 2-1
BLOCK DIAGRAM. e e e et e 2-1
MEMORY ORGANIZATION i i et e e e e 2-2
2.3.1 Program Memoryttt 2-3
2.3.2 DataMemoryc.ouiiiiii i 2-3
2.3.3 Memory Mapped I/O Registers 2-5
CORE REGISTERS e e 2-6
2.4.1 Accumulator 2-6
2.4.2 ProgramCounter 2-6
2.4.3 Control Registers 2-6
2.4.4 DataRegisters, 2-7
2.4.5 MICROWIRE/PLUS Register 2-9
2.4.6 Timer Registers 2-9
CPU OPERATIONttt et et et e e 2-9
251 Memory Fetches 2-11
2.5.2 Instruction Decoding and Execution 2-12
2.5.3 Interrupt and Error Handling 2-16
RESE T . .. e 2-17
CLOCK OPTIONSttt e e et 2-18
2.7.1 Crystal Oscillator 2-18
2.7.2 RCOscillator0iiiniiiiiii it 2-18
2.7.3 External Oscillator, 2-19
INTERRUPTS
INTRODUCTIONot e ettt e e 3-1
INTERRUPT PROCESSINGoii i 3-1
MASKABLE INTERRUPTS.t 3-2
3.3.1 Timer 1 Interrupto, 3-3
3.3.2 External Interrupt i 3-3
SOFTWARE TRAPo e 3-4
TIMER
INTRODUCTIONot e 4-1
TIMER/COUNTER BLOCK. i 4-1
TIMER CONTROLBITS e 4-1
TIMER OPERATINGMODES 4-3
4.4.1 PWMDMode e 4-3
4.4.2 External Event Counter Mode 4-4
443 Input CaptureMode ccciiiiineenn. 4-5

CONTENTS v

Chapter 5

Chapter 6

Chapter 7

Chapter 8

vi

5.1
5.2

5.3
5.4

6.1
6.2
6.3

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.1
8.2
8.3

MICROWIRE/PLUS
INTRODUCTIONo e e e e e 5-1
THEORY OF OPERATIONttt ei e 5-2
5.2.1 TIMing ...t 5-2
5.2.2 Port G Configuration 5-3
5.2.3 SK Clock Operationcoouiiiiiiniinennnnen.. 5-3
5.2.4 BusyFlag i 5-4
MASTER MODE OPERATION EXAMPLE 5-5
SLAVE MODE OPERATION EXAMPLE........ 5-5

POWER SAVE MODE
INTRODUCTIONottt e e e e e e ettt 6-1
CLOCK-STOPPINGMETHODci it 6-1
PORT GMETHOD et et 6-2

INPUT/OUTPUT
INTRODUCTION e e et et 7-1
PORT C .ot e e 7-2
PORT D ..o e e 7-2
PORT G ..o e e 7-2
PORT L. .. 7-3
PORT L ..ottt e 7-3
ALTERNATE PORT FUNCTIONS 7-3

INSTRUCTION SET
INTRODUCTIONo e ettt ei e 8-1
FEATURE . . it e e e e ettt 8-1
ADDRESSING MODES it 8-1
8.3.1 Operand AddressingModes 8-2
8.3.2 Transfer-of-Control Addressing Modes 8-4
INSTRUCTION TYPES e e 8-6
INSTRUCTION DESCRIPTIONS.t 8-9
8.5.1 ADC—AddwithCarryccciiuiiiiinn.. 8-11
8.5.2 ADD —Add e 8-12
8.5.3 AND —And 8-13
8.5.4 CLR —Clear Accumulator 8-14
8.5.5 DCOR —Decimal Correct 8-15
8.5.6 DEC — Decrement Accumulator 8-16
8.5.7 DRSZ REG# — Decrement Register and Skip if Result is

Zero 8-17

8.5.8 IFBIT —Test Memory Bit 8-18
8.5.9 IFBNE # — If B Pointer Not Equal 8-19
8510 IFC—TestifCarry, 8-20
8511 IFEQ—TestifEqual 8-21
8.5.12 IFGT —Testif Greater Than 8-22
8.5.13 IFNC —Testif NoCarrycciiiiiinn. .. 8-23
8.5.14 INC — Increment Accumulator 8-24
8.5.15 INTR — Interrupt (Software Trap) 8-25
8516 JID—Jumplndirect............ L. 8-27

CONTENTS

8.6

Chapter 9

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11

9.12

Chapter 10

10.1
10.2
10.3
10.4

8.5.17 JMP —JumpAbsolute, 8-28

8.5.18 JMPL — Jump AbsoluteLong 8-29
8.5.19 JP—JumpRelative L 8-30
8.5.20 JSR—dJumpSubroutine........... 8-31
8.5.21 JSRL — Jump SubroutineLong 8-32
8.5.22 LAID — Load Accumulator Indirect 8-33
8.5.23 LD —Load Accumulator 8-34
8524 LD—LoadBPointer 8-36
8525 LD—LoadMemorycooiiiiiiiiii... 8-37
8526 LD —LoadRegister 8-38
8527 NOP—NoOperationoviiiiui. ... 8-39
8528 OR—Or 8-40
8529 RBIT —ResetMemoryBit 8-41
8530 RC—ResetCarry 8-42
8.5.31 RET — Return from Subroutine 8-43
8.5.32 RETI — Return from Interrupt 8-44
8.5.33 RETSK—ReturnandSkip 8-45
8.5.34 RRC — Rotate Accumulator Right Through Carry 8-46
8535 SBIT—SetMemoryBit 8-47
8536 SC—SetCarryviiiiiiiii 8-48
8.5.37 SUBC — SubtractwithCarry 8-49
8.5.38 SWAP — Swap Nibbles of Accumulator 8-50
8.5.39 X — Exchange Memory with Accumulator 8-51
8540 XOR—ExclusiveOr, 8-53
INSTRUCTION SET SUMMARYTABLES 8-54
8.6.1 Instruction Operations Summary 8-54
8.6.2 Bytes and Cycles Per Instruction 8-55
COP820C/COP840C/COP880C
INTRODUCTIONot e e e et 9-1
BLOCK DIAGRAM.ttt e e e et e et e 9-1
DEVICE PINOQUT/PACKRAGES i 9-3
PIN DESCRIPTIONS. ettt 9-4
INPUT/OUTPUT PORTS.ottt ee e 9-4
PROGRAM MEMORYt e e et e e 9-6
DATA MEMORY.o e e e e 9-6
REGISTER BIT MAPS. ittt et et e e 9-6
MEMORY MAP. . .. 9-7
RESET . . 9-7
MASK OPTION(S) . .ottt e e et e et 9-9
9.11.1 COPB20/840ttt e 9-9
9.11.2 COP880 . ..ottt e 9-9
EMULATIONDEVICES i 9-10
COP8620C/COP8640C
INTRODUCTION e e e e 10-1
BLOCKDIAGRAM.ot e e e 10-1
DEVICE PINOUT/PACKAGES 10-1
PIN DESCRIPTIONS. e 10-1

CONTENTS vii

10.5 INPUT/OUTPUT PORTS.ot 10-3
10.6 PROGRAM MEMORYot e e 10-4
10.7 DATA MEMORY. . ..ot e e 10-4
10.8 EECR AND EE SUPPORT CIRCUITRY 10-5
10.9 REGISTER BIT MAPS. . ..ttt e e e i, 10-6
10.10 MEMORY MAP. . .ot e e e e, 10-7
10.11 RESE T . . . 10-9
10.12 MASK OPTION(S) . ottt e e e e e e e e e e e i 10-9
10.13 EMULATION DEVICESottt e e e 10-10
Chapter 11 COP820CJ
11.1 INTRODUCTIONottt e e e e e 11-1
11.2 BLOCK DIAGRAM. . ..ot e e e e 11-2
11.3 DEVICE PINOUT/PACKAGES i 11-2
11.4 PIN DESCRIPTIONS. . .ot e e i 11-4
11.5 INPUT/OUTPUT PORTS. . .ottt ettt e e e 11-5
11.6 PROGRAM MEMORYttt e e 11-6
11.7 DATA MEMORY. ... o e e e 11-6
11.8 REGISTER BIT MAPS. . ..o e e e 11-6
11.9 MEMORY MARP. e e e e 11-9
11.10 RESE T . .. e 11-9
11.10.1 ResetInitialization 11-9
11.10.2 Reset Timing Considerations 11-12
11.10.3 Power-OnResetCircuit, 11-12
11.10.4 WatchdogReset i, 11-12
11.10.5 BrownOutReset, 11-12
11.10.6 ExternalReset i 11-13
11.10.7 Reset Initialization Routine 11-13
11.11 BROWN OUT PROTECTIONttt i e e 11-13
11.12 WATCHDOG. . ..o e e e e e et 11-14
11.13 MODULATOR/TIMER e i 11-17
11.14 COMPARATOR.o e e 11-21
11.15 MULTI-INPUT WAKEUPo e 11-22
11.16 MASK OPTIONS ..o e e e 11-25
11.17 EMULATION DEVICESttt e e e 11-26
Chapter 12 COP8780C
12.1 INTRODUCTIONottt e e e et e e e e ees 12-1
12.2 BLOCK DIAGRAM. . ..ot e e e e e e 12-2
12.3 DEVICE PINOUT/PACKAGES.t i i 12-2
12.4 PIN DESCRIPTIONS. . ..o e e e e e eees 12-2
12.5 INPUT/OUTPUT PORTS. . ..ttt e ettt 12-5
12.6 PROGRAM MEMORYttt ittt et e e e ieees 12-6
12.7 DATA MEMORY. ..ttt e e e e e ettt 12-6
12.8 ECON (EPROM CONFIGURATION) REGISTER 12-6
12.9 REGISTER BIT MAPS.t e e e e e 12-7
12.10 MEMORY MAP. ... e e e e e 12-8
12.11 RESE T . .. e e 12-8
12.12 OSCILLATOR CIRCUITS . . . oottt et et e e et e e 12-10
viii CONTENTS

12.13 PROGRAMMING THE COP8780C., 12-10

12.14 ERASING THE COP8780C EPROM., 12-11
12.15 EMULATION DEVICESttt et e e 12-12
Chapter 13 APPLICATION HINTS
13.1 INTRODUCTION . . .ttt e e e e e et 13-1
13.2 MICROWIRE/PLUS INTERFACE 13-1
13.2.1 MICROWIRE/PLUS Master/Slave Protocol 13-1
13.2.2 MICROWIRE/PLUS Continuous Mode 13-3
13.2.3 MICROWIRE/PLUS Fast Burst Output 13-4
13.24 NMC93C06-COP820C Interface 13-6
13.3 TIMER APPLICATIONSottt e e e e e e 13-10
13.3.1 TimerCapture Example 13-10
13.3.2 TimerPWMExample 13-11
13.3.3 External Event Counter Example 13-13
13.4 TRIAC CONTROLttt et e ittt e e 13-14
13.5 COP820CJ APPLICATION HINTS. i i e e 13-18

13.5.1 Analog To Digital Conversion Using On-chip Comparator . 13-18
13.5.2 Application Example: Battery-Powered Weight

Measurementcccoeiiniiiiiiniiieee 13-21

13.5.3 ZeroCrossDetection, 13-21

13.5.4 Application Example: Industrial Timer 13-23

13.5.5 LED Drive Usingthe COP820CJ 13-23

13.5.6 Application Example: Temperature Control 13-29

13.5.7 PhaseControlofan ACLoad 13-29

13.5.8 Application Example: Remote Control Unit............. 13-33

13.6 PROGRAMMINGEXAMPLES, 13-33

13.6.1 ClearRAM it i 13-33

13.6.2 Binary/BCD Arithmetic Operations 13-34

13.6.3 Binary Multiplication 13-37

13.6.4 BinaryDivisionc.. i 13-38

13.7 EXTERNAL POWER WAKEUPCIRCUIT......................1340

13.8 EXTERNAL WATCHDOG CIRCUIT 13-43

13.9 INPUT PROTECTION ON COP800OPINS 13-44
13.10 ELECTROMAGNETIC INTERFERENCE (EMI)

CONSIDERATIONS. . .. et 13-46

13.10.1 Introduction 13-46

13.10.2 Emission Predictions oo 13-47

13.10.3 Board Layout00ttt 13-48

13.10.4 Decouplingttt 13-48

13.10.5 Output SeriesResistance 13-49

13.10.6 Oscillator Control 13-50

13.10.7 Mechanical Shielding 13-50

13.10.8 Conclusioncuiinittiieeiiiie 13-50

Appendix A COP8 DEVELOPMENT SYSTEM
Appendix B ELECTRICAL CHARACTERIZATION DATA

INDEX

CONTENTS ix

Figures
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 3-1
Figure 4-1
Figure 4-2
Figure 4-3
Figure 5-1
Figure 5-2
Figure 5-3
Figure 7-1
Figure 9-1
Figure 9-2
Figure 10-1
Figure 10-2
Figure 11-1
Figure 11-2
Figure 11-3
Figure 11-4
Figure 11-5
Figure 11-6
Figure 11-7
Figure 11-8
Figure 12-1
Figure 12-2
Figure 13-1
Figure 13-2
Figure 13-3
Figure 134
Figure 13-5
Figure 13-6
Figure 13-7
Figure 13-8
Figure 13-9
Figure 13-10
Figure 13-11
Figure 13-12
Figure 13-13
Figure 13-14
Figure 13-15
Figure 13-16
Figure 13-17
Figure 13-18
Figure 13-19

COP800 Block Diagram.coviiiiiininnnnnnn.. 2-2
COP800 CPUInterface 2-10
Crystal Oscillator Circuitcoiiiiiiiiinnn .. 2-18
RCOscillator Circuitot i e 2-18
External Oscillator Circuit, 2-19
Interrupt Block Diagram............... 3-1
Timerin PWMMode, 4-3
Timer in External Event Counter Mode. 4-5
Timer in Input Capture Mode. 4-6
MICROWIRE/PLUS Example.couviini... 5-1
MICROWIRE/PLUS Circuit Block Diagram 5-2
MICROWIRE/PLUS Interface Timing 5-3
COP800 Port Structurettt 7-1
COP820/840/880 Block Diagram. 9-2
Device Package Pinouts............. i, 9-3
COP8620/8640 Block Diagramcciuuueunun.. 10-2
Device Package Pinouts. iiiiiinunn.. 10-2
COP820CJ Block Diagramcciitiiiinnnnnnnnnn.. 11-2
Device Package Pinouts. 11-3
Watchdog Timer Block Diagram............................. 11-15
Modulator Block Diagram/Output Waveform 11-18
Mode 2: 50% Duty Cycle Output............................. 11-19
Mode 3: Variable Duty Cycle Qutput 11-20
Multi-Input Wakeup Logic 11-23
Battery-Powered Remote Control Unit. 11-24
COP8780 Block Diagram.ttt 12-2
Device Package Pinouts. 12-3
MICROWIRE/PLUS Sample Protocol Timing 13-2
MICROWIRE/PLUS Fast Burt Timing 13-5
NMC93C06-COP820C Interface, 13-6
Timer Capture Application 13-10
PWM Timer Application 13-12
A/D Conversion Using COP820CJ Comparator and Timer T1. 13-18
Battery-powered Weight Measurement Using COP820CJ 13-22
Industrial Timer Application Using The COP823CJ............. 13-24
3-way Multiplexed Led Display With COP820CJ 13-25
Temperature Controlled Appliance Using COP820CJ 13-30
AC Phase Control Application Using COP820CJ 13-32
Power Wakeup Using An NPN Transistor..................... 13-41
Power Wakeup Using Diodes And Resistors 13-42
External Watchdog Circuit A, 13-43
External Watchdog Circuit B 13-43
Ports L/C/G Input Protection (Except G6) 13-44
Port I Input Protection.o, 13-44
Diode Equivalent of Input Protection......................... 13-45
External Protectionof Inputs 13-46

X CONTENTS

Tables
Table 1-1
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 4-1
Table 4-2
Table 5-1
Table 5-2
Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5
Table 9-1
Table 9-2
Table 9-3
Table 9-4
Table 10-1
Table 10-2
Table 10-3
Table 10-4
Table 11-1
Table 11-2
Table 11-3
Table 11-4
Table 11-5
Table 11-6
Table 11-7
Table 11-8
Table 11-9
Table 11-10
Table 11-11

Table 11-12
Table 12-1
Table 12-2
Table 12-3
Table 12-4
Table 12-5
Table 12-6
Table 12-7
Table 12-8
Table 13-1

Features List e 1-3
DataMemory Map.couinii i e e 2-4
I/O Port Configuration., 2-5
PSWRegister Bits i 2-7
CNTRL Register Bits. 2-7
Timer Control Bits........ i .. 4-2
Timer Mode Control Bits. 4-2
Port G Configuration RegisterBits. 5-4
Master Mode Clock Select Bits 5-4
Instructions UsingAand C..........., 8-55
Transfer of Control Instructions 8-55
Memory Transfer Instructions 8-56
Arithmetic and Logic Instruction 8-56
OpPCodes.ot e 8-57
COP820/840/880 Pin Assignmentsouiurinininnnnennn. 9-5
PSWRegister Bits i 9-7
CNTRL Register Bits. i 9-7
COP820/840/880 Memory Map oot i e ee i ie e 9-8
COP8620/8640 Pin Assignments.ovitenirnnnnnnnnn. 10-3
PSWRegister Bits 10-6
CNTRL Register Bits.o it i 10-7
COP8620/8640 Memory Map. vvtii it 10-8
COP820CJI Pin Assignments.ttt 11-4
WKEDG Register Bits (Address00C8 Hex). 11-7
WKEN Register Bits (Address00C9Hex) 11-7
WKPND Register Bits (Address 00CAHex). 11-8
WDREG Register Bits (Address 00OCDHex). 11-8
PSW Register Bits (Address 00EF Hex). 11-8
CNTRLI1 Register Bits (Address OOEE Hex) 11-9
CNTRL2 Register Bits (Address 00CCHex) 11-9
COP820CI MemoryMap.c.covvenene.nn......11-10
Reset Initialization. 11-11
Effect of HALT, Reset and loading WDCNT on

WATCHDOG Registers..ooi it e e 11-16
Modes of PWM timeroiuiiiiiii .. 11-21
COP8780 Pin Assignmentscouiiiininennenn... 12-4
ECON Register.o i 12-7
PSWRegister Bits 12-8
CNTRL Register Bits. i, 12-8
COP8780 Memory Mapuiieeeieeiieaenen.., 12-9
EPROM Security Enabled.................................. 12-10
EPROM Security Disabled 12-11
Emulation Cross Reference................................. 12-12
Electric Field Calculation Results.covviuin... 13-47

CONTENTS «xi

xii CONTENTS

Chapter 1

OVERVIEW

1.1 INTRODUCTION

The COP800 Basic Family microcontrollers provide high-performance, low-cost solutions
for embedded control applications. The 8-bit single-chip core architecture fabricated with
National Semiconductor’s M2CMOS™ technology has low current drain, low heat
dissipation and a wide operating voltage range. An instruction execution time of one
microsecond for the majority of single-byte instructions allows high throughput; over 70
percent of the COP800 instructions are single-byte. Multiple addressing modes and a
rich instruction set further enhance throughput efficiency and reduce program size.
Reconfigurable I/Os, and on-chip peripherals such as multi-mode general purpose timers
and the MICROWIRE/PLUS™ serial interface of the COP800 offer the flexibility needed
to construct single-chip solutions for a variety of applications.

All COP800 Basic Family microcontrollers share the set of features listed in Section 1.2.
Some individual family members also contain additional features. These device specific
features which include special timers, brown out protection, and multi-input wakeup are
listed in Section 1.3.

1.2 BASIC FEATURES

Each member of the COP800 family of microcontrollers offers the following features:
e 8-bit core processor.
e CMOS technology which provides low power, fully static operation.
e HALT MODE with very low standby power.

e Memory Mapped Architecture — all RAM, I/O Ports, and registers (except A and
PC) are mapped into Data Memory Address space.

¢ Flexible, reconfigurable I/O.
¢ On-chip Data and Program Store memory.

e MICROWIRE/PLUS (3-Wire Serial Data Communications System) — allows the
microcontroller to be programmed for either master or slave configuration.

e Extremely versatile 16-bit timer, with an associated 16-bit autoload/capture reg-
ister, which can operate in any of 3 different modes:

OVERVIEW 1-1

1.3

— PWM (Pulse Width Modulation).
— External Event Counter.

— Input Capture, with each capture resulting from an external edge input (pro-
grammable edge polarity).

16-bit timer and associated 16-bit autoload/capture register memory mapped as
two 8-bit registers.

Two memory mapped Control Registers for Timer Mode Select and Control, MI-
CROWIRE/PLUS Select and Control, Interrupt Enable and Control, and Carry
and Half Carry flags.

Three interrupts:

— External Interrupt (maskable).

— Timer Interrupt (maskable).

— Software Trap Error Interrupt (non-maskable).
Two 8-bit Register Indirect Data Memory Pointers
8-bit Stack Pointer (stack in Data Memory RAM)

Port G. The bidirectional Port G has dual functions defined for most of the pins.
The dual functions include HALT, MICROWIRE/PLUS interface, external inter-
rupt input, timer I/O, and oscillator output.

Three different clock modes:
— Crystal Oscillator
— R/C Oscillator

— External Oscillator

DEVICE SPECIFIC FEATURES

In addition to the core features, non-core features are provided by specific COP800
devices. These features are:

1-2

Data Memory EEPROM (COP8620/8640)
Watchdog Timer (COP820CJ)

Brown-out Protection (COP820CJ)

Comparator (COP820CJ)

Modulator/Timer for High Speed PWM (COP820CJ)
Multi-input Wakeup from HALT mode (COP820CJ)

OVERVIEW

Table 1-1 lists the available COP800 device types and shows the features present in each
device. The device types are listed along the left side, and the features are listed across
the top. Inside the table, the word “YES” or a numerical quantity indicates the presence
of a feature; a dash indicates the absence of a feature. Memory sizes are expressed in

bytes.
Table 1-1 Features List

Program Memory| Data Memory Brown
Device Type EPROM Timers | MIWU | Comparator Out

ROM RAM | EEPROM Detection

or OTP

COP820 "1K — 64 — 1 — — —
COP840 2K — 128 — 1 — — —
COP880 4K — 128 — 1 — — —
COP8780 - 4K 128 — 1 — — —
COP8620 1K — 64 64 1 —_— — —
COP8640 2K — 64 64 1 — — —
COP820CJ 1K — 64 — 3 YES YES YES

OVERVIEW 1-3

1-4 OVERVIEW

Chapter 2

ARCHITECTURE

2.1 INTRODUCTION

The COP800 microcontroller contains all program and data memory internally. In
addition, it contains on-chip configurable I/Os, an on-chip timer and a built-in
MICROWIRE/PLUS interface. The presence of on-chip memory and peripherals allows
the COP800 microcontroller to provide a single-chip solution for many applications.

The COP800 memory organization is based on the “Harvard” architecture, in which the
program memory is distinct from the data memory. Each of these two types of memory
has its own physical memory space, and uses its own internal address bus. The
advantage of this type of organization is that accesses to program memory and data
memory can take place concurrently, reducing overall execution time. By contrast, in the
“Von Neumann” architecture, program memory and data memory share the same
address bus, and concurrent accesses cannot occur.

Except for the Accumulator (A) and Program Counter (PC), all registers, I/O ports, and
RAM are memory mapped in the data memory address space. Among these registers are
the B Register, X Register, Stack Pointer (SP), and I/O port registers. All such registers
can be accessed by reading or writing their memory addresses.

The COP800 architecture provides one enhancement to the Harvard architecture: An
instruction called Load Accumulator Indirect (LAID), which allows access to data tables
stored in program memory. A conventional Harvard architecture does not allow this.

The COP800 device communicates with other devices through several configurable I/O
ports or through the MICROWIRE/PLUS serial I/O interface. The I/O ports are
designated by letter names such as: Port C, Port D, Port G, Port I, and Port L.

A 16-bit general-purpose timer is provided, together with an associated 16-bit autoload/
capture register. The timer can be configured to operate in any of three modes: Pulse
Width Modulation (PWM), external event counter, or input capture mode.

Three different interrupts are available in the device: the maskable external interrupt,
the maskable timer interrupt, and the non-maskable software trap interrupt. All
interrupts cause a branch to a specific address in program memory. The program code at
that address determines the relative priority of the maskable interrupts.

2.2 BLOCK DIAGRAM

A block diagram of the COP800 Basic Family architecture is shown in Figure 2-1. All
Basic Family devices contain the elements pictured in the block diagram. These elements
include: the Arithmetic Logic Unit (ALU), Data Memory, Program Memory, Timer 1,
MICROWIRE/PLUS, Port I/Os, and Interrupt Logic. Functional blocks not common to all

ARCHITECTURE 2-1

PROGRAM * DATA
°F CLOCK
EMORY | ™EMoRY ppgepe
| TIMER/COUNTER INTERRUPT
WITH (TIMER &
™ AUTOLOAD/ [*| EXTERNAL)
MEMORY HALT CAPTURE
PROGRAM MEMORY, REGISTER
REGISTER

CPU
REGISTERS TIO
H ris |
1 B I ALU S0

22| MICROWIRE/PLUS

X SK
H ri1 H S

[]

(]
H psw

PORT G PORT 1/Os

L entRLH
INSTRUCTION
DECODER

TSP-COP820-01

Figure 2-1 COP800 Block Diagram

Basic Family members are not shown in Figure 2-1. Block diagrams of individual devices
are shown in the device specific chapters of this manual.

2.3 MEMORY ORGANIZATION

The COP800 microcontrollers are based on a modified Harvard-style architecture. This
type of architecture separates the program memory from the data memory. Each memory
type has its own addressing space, address bus, and data bus. The following sections

describe the COP800 memory structure.

2-2 ARCHITECTURE

2.3.1 Program Memory

The COP800 program memory is a block of byte wide non-volatile ROM or EPROM memory,
which may hold program instructions or constant data. The program memory addressing
range is 32 Kbytes. A 15-bit Program Counter (PC) is used to address the program memory,
which is subdivided into 4-Kbyte segments with respect to certain instructions.

The 4-Kbyte segment divisions within the program memory are related to the 2-byte
Jump Absolute (JMP) and Jump Subroutine (JSR) instructions. These economical
instructions cause the lower 12 bits of the PC to be replaced by the value specified in the
instruction while the upper 3-bits remain unchanged. Thus, these instructions branch
only within the currently addressed 4-Kbyte program memory segment.

The indirect instructions, Jump Indirect (JID) and Load Accumulator Indirect (LAID), op-
erate only within a program memory block of 256 bytes. This restriction exists because only
the lower 8 bits of the PC (PCL) are replaced during program memory table lookups. The
upper 7 bits of the PC (PCU) remain unchanged. Replacing only the PCL minimizes the
execution time of this instruction. Programmers must ensure that LAID and JID instruc-
tions, and their associated tables do not cross the 256 byte program memory boundaries.

The very economical Jump Relative Short (JP) instruction is completely independent of
all program memory block and memory segment boundaries. This single-byte JP
instruction allows a branch forward of up to 32 locations or backwards of up to 31
locations relative to the current contents of the program counter. A branch forward of 1
is not allowed, since this may be implemented with a NOP.

2.3.2 Data Memory

The COP800 data memory consists of several blocks of byte-wide RAM and/or EEPROM
memory. The data memory addressing range is potentially 32 Kbytes. Devices that contain
more than 128 bytes of RAM use a data segment extension register to increase the data
addressing range beyond the first 128 bytes. This is necessary because the memory address
register (MAR) used to access all data memory locations is only 8 bits wide.

The COP800 data memory base segment may be viewed as two separate sections: a lower
address range of 0000 to 006F Hex and an upper address range of 0080 to 00FF Hex. The
lower base segment contains the program stack and general-purpose data memory. The
upper address range contains data registers, and the memory-mapped I/O registers,
control registers, timers with associated capture registers, MICROWIRE/PLUS shift
register, etc.

The data memory is either addressed directly by instructions or indirectly by the B, X
and SP pointers. The COP800 instruction set permits any bit in data memory to be set,
reset or tested. All I/O, registers, pointers, and counters in the COP800 family (except for
A and PC) are memory mapped in data memory. Therefore, all /O bits and register bits
can be individually set, reset, and tested.

Sixteen bytes of RAM are memory mapped as “registers” at addresses 00F0 to 00FF Hex.
Certain instructions work only with this register memory, while others are more efficient
when used with this register memory rather than other memory. The three pointer
registers X, SP and B, are memory mapped into the register memory space at address
locations 00FC to OOFE Hezx, respectively. In COP800 devices with more than 128 bytes

ARCHITECTURE 2-3

of RAM, the data segment extension register is memory mapped at location 00FF Hex.
See Section 2.4.4 for more information on the COP800 data registers.

The first sixteen locations of data store memory (0000 to 000F Hex) have special
significance for the load B with immediate data instruction. This instruction is extremely
efficient for loading the B pointer with addresses in this range because it is a single-byte,
single-cycle instruction. Loading B with addresses and/or values greater than 000F Hex
requires a two-byte, three-cycle instruction.

All RAM, EEPROM, I/O ports, counter, and registers (except A and PC) are mapped into the
data memory address space. Table 2-1 shows a basic memory map for all COP800 devices.
Refer to the device specific chapters for complete memory maps of individual devices.

Table 2-1 Data Memory Map

Address Contents
00-6F On-chip RAM Address Space
70-BF On-chip Data Memory Address Space
CO0-CF I/O and Register Address Space

Do Port L Data Register

D1 Port L Configuration Register
D2 Port L Input Pins (read only)
D3 Reserved for Port L

D4 Port G Data Register

D5 Port G Configuration Register
De Port G Input Pins (read only)
D7 Reserved for Port G

D8 Port I Input Pins (read only)
D9 Port C Data Register

DA Port C Configuration Register
DB Port C Input Pins (read only)
DC Reserved for Port C

DE Port D Data Register

DF Reserved for Port D

EO-E8 On-chip Functions and Registers
E9 MICROWIRE shift register
EA Timer 1 Lower Byte
EB Timer 1 Upper Byte
EC Timer 1 Autoload Register Lower Byte
ED Timer 1 Autoload Register Upper Byte
EE CNTRL Control Register
EF PSW Register

FO to FF | On-chip RAM mapped as Registers
FC X Register
FD SP Register
FE B Register
FF S Register or General Purpose Register

2-4 ARCHITECTURE

2.3.3 Memory Mapped I/O Registers

The COP800 devices have three different types of ports: reconfigurable input/output,
dedicated output, and dedicated input. Each I/O port has specific memory-mapped I/O
registers/addresses associated with it, depending on the port type. The following sections
describe the I/O port register structure for each port type.

NOTE: All port registers and pins are memory-mapped in the data store memory
address space. Therefore, instructions which operate on data memory also
operate on port registers and pins. This includes instructions used to set, re-
set and test individual bits. The I/O register addresses for specific ports are
listed in the memory map shown in Table 2-1.

Reconfigurable Input/Outputs

Reconfigurable input/output ports have two associated port registers: a port
configuration register and a port data register. These two memory-mapped registers
allow the port pins to be individually configured as either inputs or outputs, and to be
individually changed back and forth in software. The configuration register is used to set
up the pins as inputs or outputs. A pin may be configured as an input by writing a ‘0’ or
as an output by writing a “1” to its associated configuration register bit. If a pin is
configured as an output, the associated data register bit represents the state of the pin
(1 = logic high, 0 = logic low). If the pin is configured as an input, the associated data
register bit determines whether the pin is a weak pull-up or Hi-Z input. Table 2-2 details
the port configuration options. The port configuration and data registers are read/write
registers.

Table 2-2 I/O Port Configuration

Configuration Bit | Data Bit Port Pin Setup
0 0 Hi-Z input (TRI-STATE output)
0 1 Input with weak pull-up
1 0 Push-pull zero output
1 1 Push-pull one output

A third data memory address is assigned to each I/O port. Reading this memory address
returns the value of the port pins regardless of how the pins are configured.

Dedicated Outputs

Dedicated output ports have one associated port register. This memory-mapped output
data register is used to set the port pins to a logic high or low. A port pin may be
individually set or reset by writing a one or zero to its associated data register bit. Port
data registers may be read or written.

ARCHITECTURE 2-5

Dedicated Inputs

Dedicated input ports have no associated port registers. However, a data memory
address is assigned to the port pins for reading of the port input. Port pin addresses are
read-only memory locations.

2.4 CORE REGISTERS

All COP800 Basic Family microcontrollers share a common block of logic referred to as
the COP800 core. This core includes the COP800 Central Processing Unit (CPU), the
Timer 1 Block, and the MICROWIRE/PLUS block. The registers contained within these
blocks are the core registers. The CPU registers include: a 15-bit program counter (PC),
an 8-bit accumulator (ACC), a processor status word (PSW), a core control register
(CNTRL), and sixteen 8-bit data memory registers. The Timer 1 registers include: one
16-bit timer and a 16-bit autoload capture register. The MICROWIRE/PLUS block has
one 8-bit shift register. All core registers are memory mapped into the data memory
address space except for the program counter (PC) and accumulator (ACC). The following
sections describe in detail the COP800 core registers.

2.4.1 Accumulator

All COP800 family parts have a single 8-bit accumulator. The accumulator is used in all
arithmetic and logical operations, such as ADD and XOR. In addition, it is used with the
exchange, JID and LAID instructions. The arithmetic and logical instructions use the
accumulator as both an operand and result register. A second operand register, if
required, is either the instruction register (IR), which contains immediate data, or a
register in data memory.

2.4.2 Program Counter

The CPU contains a 15-bit program counter used in addressing the byte-wide program
memory. The PC is initialized to zero at reset and is incremented once for each byte of an
instruction opcode. Jumps, jump subroutines, interrupts, and the JID instruction cause
some or all of the PC bits to be replaced. Transfer-of-control instructions that replace only
some of the PC bits have a limited jumping range.

2.4.3 Control Registers

The COPS800 core contains two 8-bit control registers (PSW and CNTRL). The following
paragraphs and tables show the bits contained in each register. The functions of these
bits are described in later chapters.

2-6 ARCHITECTURE

PSW Register (Address 00EF Hex)

The Processor Status Word (PSW) register contains eight different flag bits. The register
bits are assigned as follows:

GIE Global interrupt enable (enables interrupts)

ENI External interrupt enable

BUSY MICROWIRE busy shifting flag

IPND External interrupt pending

ENTI Timer T1 interrupt enable

TPND Timer T1 interrupt pending (timer underflow or capture edge)
C Carry Flip/Flop

HC Half-Carry Flip/Flop

Table 2-3 PSW Register Bits

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0
HC C TPND ENTI IPND BUSY ENI GIE

CNTRL Register (Address 00EE Hex)

The Timer and MICROWIRE Control (CNTRL) register contains various MICROWIRE/
PLUS, External Interrupt Edge, and Timer Control flags. The MICROWIRE/PLUS flags
include SLO and SL1, which select the MICROWIRE PLUS clock division factor, and
MSEL, which selects the G port signals G5 and G4 as the MICROWIRE/PLUS signals
SK and SO, respectively. The External Interrupt Edge Control flag selects the External
Interrupt Signal input polarity. The Timer Control flags include TRUN, which is used to
start and stop the timer/counter, and three Timer Mode Control signals.

The timer and MICROWIRE control register bits are:
SL1 & SLO Select the MICROWIRE clock divide-by (00=2,01=4,1x=8)

IEDG External interrupt edge polarity (0 = rising edge, 1 = falling edge)
MSEL Selects G5 and G4 as MICROWIRE signals SK and SO, respectively
TRUN Used to start and stop the timer/counter (1 = run, 0 = stop)

TC1 Timer T1 Mode Control Bit

TC2 Timer T1 Mode Control Bit

TC3 Timer T1 Mode Control Bit

Table 2-4 CNTRL Register Bits

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0
TC1 TC2 TC3 TRUN | MSEL IEDG SL1 SLO

2.4.4 Data Registers

The COP800 contains sixteen 8-bit data registers located in data memory from address
00F0 to OOFF Hex. Four of these registers, 00FC through 00FF Hex, have special
functions. Locations 00FC and 00FE Hex contain the 8-bit data memory pointers X and
B, respectively. Location 00FD contains the 8-bit stack pointer (SP) for data memory.

ARCHITECTURE 2-7

Location O0FF is reserved for the data segment extension register, which is used in some
COP800 devices to extend data memory beyond 128 bytes. In devices that contain 128 or
fewer bytes of data memory, this register is available for general usage. The remaining
twelve registers, 00F0 through 00FB, are always available for general purpose use.

Certain COP800 instructions differentiate data registers from other data memory
locations, such as the DRSZ (decrement register skip if zero) instruction. DRSZ subtracts
one from a specified data register and skips the following instruction if the result of the
decrement is zero. This instruction is extremely useful in constructing code loops, and
makes the data registers ideal choices for loop counters. Other instructions like the “load
memory with immediate data” are more efficient when used with the register memory
than when used with the general data memory.

Stack Pointer

The stack pointer (SP) is memory mapped at data memory location 00FD Hex. The stack
pointer should be initialized before any subroutine calls or interrupts occur. Normally,
the stack pointer is initialized to the top of the base segment of data memory. In the
COP820C, this is memory location 002F Hex. In the COP880C, this is memory location
006F Hex.

Pushing addresses onto the stack causes the stack to grow downward in data memory
toward address zero. Popping addresses off the stack causes the stack to shrink upward.
If the stack pointer is initialized to the top of the base segment of memory, over-popping
the stack causes a Software Trap error interrupt. The lower limit of the stack is address
0000 Hex. Over-pushing the stack causes the stack to wrap around to addresses 00FF
and 00FE Hex (subroutine calls and interrupts cause a double-byte push). This should
be avoided because it interferes with the B pointer, which is memory mapped at location
00FE Hex.

The user may initialize the stack pointer anywhere in the base segment of memory. The
stack still grows down toward address zero, but the stack no longer has the Software
Trap interrupt over-pop protection. Initializing the stack pointer to one of the upper base
segment data register addresses (00F0 to 00FB Hex) is potentially very hazardous. The
available stack memory is severely limited, and if the stack pushes downward beyond
address location 00F0, interference occurs with the PSW and CNTRL control registers,
which are memory mapped at address locations O0EF and 00EE Hex, respectively.

Data Memory Pointers (Index Registers)

The COP800 contains two special registers, X and B, which may be used as pointers.
These registers allow indirect addressing of all locations mapped in the data memory
address space. In addition, these registers may be automatically incremented or
decremented by certain instructions that use register indirect addressing. The auto-
incrementing and auto-decrementing features allow the user to easily step through data

memory locations (i.e., tables).

2-8 ARCHITECTURE

2.4.5 MICROWIRE/PLUS Register

The MICROWIRE/PLUS three-wire serial communication system contains an 8-bit
memory mapped serial shift register (SIOR). The serial data input and output signals to
the SIOR register are supplied by SI and SO, respectively. The shift register is clocked by
signal SK. Data is shifted through the SIOR from the low-order end to the high-order end
on the falling edge of the SK clock signal.

2.4.6 Timer Registers

The COPS800 core contains one timer block. The timer block consists of a 16-bit timer/
counter with an associated 16-bit autoload/capture register. The 16-bit register and timer
are each organized as two 8-bit memory mapped registers. The upper and lower byte
addresses for the memory mapped timer and autoload/capture register are shown in the
data memory address map (Table 2-1).

2.5 CPU OPERATION

This section describes the operation of the COP800 Central Processing Unit (CPU). A
brief description of the control logic and the Arithmetic Logic Unit, is given at the
beginning of this section. The remainder of this section describes how the microcontroller
performs memory fetches, executes instructions, and handles interrupt and error
conditions. A block diagram of the main elements which interface with the control logic
and ALU is shown in Figure 2-2.

Control Logic

The CPU Control Logic controls virtually all operations within the device. It includes the
program counter, the memory address register, the processor status word register, and
the instruction register for storing information. It also includes logic for directing
memory fetches, instruction decoding and execution, and interrupt/error handling. It
receives inputs from the ALU and on-chip peripherals, including the timer(s) and the
MICROWIRE/PLUS interface, and generates control signals for these and other parts of

the device.

Arithmetic Logic Unit (ALU)

The ALU performs all logical and arithmetic operations. Inputs to the ALU are provided
by the accumulator, several hard-wired data constants, the carry/half-carry bits and the
memory data register (MDR). The ALU inputs for a given instruction are specified in the
instruction opcode. The accumulator functions as both a source and destination for the
ALU, and is used in all logical and arithmetic instructions. It always contains the result
of the last executed logical, arithmetic, or load/exchange accumulator instruction. The
hard-wired data constants, which include 0000, 0001, and OOFF Hex, are used in
instructions like CLR A, INC A, and DEC A. These instructions have an implicit
addressing mode. The carry (C) and half-carry (HC) bits are used in instructions like
ADC and SUBC. All arithmetic and logical instructions with two operands use the MDR
as one input to the ALU. The MDR may be loaded with operands from data memory or

ARCHITECTURE 2-9

 Rris 00—
H B
MUX
H o x
- Rn
i ARITHMETIC
Loaic |
e UNIT
SIS
N g WEOT DAL e
REGISTER 00—
DATA i (MDR) PSW
MEMORY 01— mMux |—
- Rs
FF—]
—> — R4
— N s
H Re
}—— S
L Ro
MEMORY
ADDRESS
REGISTER
INTERNAL DATA BUS
y ¥
2
CONTROL LOGIC UNIT PROGRAM COUNTER
CONTROL OUTPUTS¢—
STATUS INPUTS —» CNTRL INSTRUCTION PROGRAM MEMORY

Figure 2-2 COP800 CPU Interface

TSP-COP820-02

the instruction register (immediate data specified in an instruction opcode). Since only
one MDR exists, arithmetic and logical instructions can not be performed directly on two
operands from data and/or program memory. Such operations require one operand from
memory to be loaded into the accumulator prior to execution.

2-10 ARCHITECTURE

2.5.1 Memory Fetches

The following two sections describe the manner in which the COP800 Basic Family
microcontrollers access data and program memory. Memory access time greatly affects
total instruction execution time, and is therefore an important element in understanding
the COP800 CPU timing.

Data Memory Fetches

All data memory accesses are performed using the internal memory address register
(MAR). The contents of the MAR select the location within the data memory address
space to be read/written by the current instruction. It should be noted that Memory
Direct to Memory Direct data transfers and operations are not supported.

The MAR is loaded with the contents of the B pointer during the last instruction cycle of
all instructions. Therefore, instructions that use the Register B Indirect mode of
addressing are extremely efficient. This is because the address of the memory location to
be accessed during an instruction is already present in the MAR at the start of the
instruction. Instructions that use Memory Direct addressing or Register X Indirect
addressing to access data memory require an extra one or two instruction cycles to fetch
and load the desired memory address into the MAR before the actual instruction can be
executed.

Some instructions that use Memory Direct addressing are more efficient when
addressing the data registers located between 00FO and O0FF Hex because in these
instructions, the complete memory address of the register is contained in the first byte of
the instruction opcode. This allows the MAR to be loaded with the new address in the
first instruction cycle of the instruction. Instructions that do not access data memory do
not affect the MAR. During the execution of instructions that use the ALU and an
operand from data memory, the contents of the memory location addressed by the MAR
is loaded into the memory data register (MDR) before being fed into the ALU.

Program Memory Fetches

All program memory accesses are performed using the 15-bit program counter (PC). This
includes accesses to program memory for table lookups. At any given time, the PC
addresses one byte within program memory. This byte is loaded into the instruction
register for decoding, or used as immediate or memory address data. All data/opcode
fetches cause the PC to be incremented automatically, so that the PC typically points to
one program memory location ahead of the current instruction byte being executed. This
allows pre-fetching of opcodes. This is also the reason why table lookup instructions
(LAID, JID) located at the last byte within a 256-byte program memory page cause
fetches from program memory locations in the following 256-byte page. (The JID and
LAID instructions replace the lower 8 bits of the PC, and rely on the current upper 7 bits
of the PC to form the complete address for table lookups. However, the upper 7 bits of the
PC change when the PC is automatically incremented over a page boundary.)

ARCHITECTURE 2-11

2.5.2 Instruction Decoding and Execution

All instruction decoding is performed by the CPU Control Logic. Single-byte opcodes
require a single memory fetch. Therefore, many single-byte opcodes are single cycle.
Multiple byte opcodes require more than one program memory fetch. The first byte of
these opcodes is decoded to determine the number of program fetches needed to complete
the instruction, and possibly the actual operation to be performed. Only one program
memory fetch can be performed during a single instruction cycle. Therefore, an
instruction always requires at least as many instructions cycles to execute as the number
of opcode bytes.

NOTE: Data and program memory fetches can be performed in the same instruc-
tion cycle due to the Harvard-style architecture of the COP800 Family.

The instruction cycle clock (t¢) always equals one-tenth the frequency of the clock signal
at the CKI pin. All instructions are executed in multiples of the instruction cycle clock
period.

A pre-fetch of the next instructions first byte is always done during the last cycle of an
instruction. In addition, the PC is always incremented. This means that at the start of
the first cycle of an instruction, the opcode for that instruction is already in the IR and
the PC is pointing to the next instruction byte. In order to generate skips (non-execution
of an instruction), the microcontroller Skip Logic is activated. This prevents the next
instruction (already located in the IR) from being executed by the microcontroller.
Skipped instructions require X number of cycles to be skipped, where X equals the
number of bytes in the skipped instruction’s opcode.

The exact number of instruction cycles required for an instruction to execute can be found
in Section 8.6.2. As noted previously, memory fetches (and therefore addressing modes)
greatly influence instruction execution time. In order to optimize instruction execution
time, the user should pay special attention to these items when developing code.

The following sections detail the steps performed by the CPU when executing different
instructions.

One-Cycle Instructions

During the single cycle of these instructions, the following steps are performed by the
CPU:

1. The instruction is decoded and executed. (The instruction opcode is already
in the IR at the start of the instruction cycle due to pre-fetching).

2. The next instruction is fetched from program memory.

3. The PC is incremented.

Two-Cycle Instructions

The COPS800 two-cycle instructions have either one or two byte opcodes. They fall into
one of five instruction categories: logical, arithmetic, conditional, exchange or load. The
CPU steps for the various 2-cycle instructions are given below.

2-12 ARCHITECTURE

The logical, arithmetic and conditional instructions that use the Immediate addressing
mode have the following steps:

Cycle 1: Decode the opcode for the instruction. Fetch the immediate data from pro-
gram memory. Execute the instruction. Activate Skip Logic if necessary. In-
crement the PC. (The logical/arithmetic or conditional instruction is complete
at the end of this instruction cycle.)

Cycle 2: Fetch the first byte of the next instruction. Increment the PC.

Two-cycle load and exchange accumulator instructions, and load memory indirect using
the B pointer have these steps:

Cycle 1. Decode the opcode for the instruction. If necessary, fetch the immediate data
from program memory and increment the PC. Execute the instruction. (The
load or exchange is complete at the end of this instruction cycle.)

Cycle 2: If necessary, increment or decrement the B pointer. Load the contents of the
B pointer into MAR. Fetch the first byte of the next instruction. Increment
the PC.

T . T N S T S
nree vycie insiruciions

The COP800 devices have eleven three-cycle load and exchange instructions. A generic
overview of the sequence of steps performed by the CPU in executing these instructions
is given below.

Cycle 1: Decode the opcode for the instruction. If necessary, fetch the memory direct
address from program memory and increment the PC. Load the MAR with
the address of the data memory location to be accessed (either the address
fetched from program memory or the contents of the X pointer, depending on
the instruction). If necessary, increment or decrement the X pointer.

Cycle 2: If necessary, fetch the immediate data from program memory and increment
the PC. Execute the instruction. (The load or exchange is complete at the end
of this instruction cycle.)

Cycle 3: Load the contents of the B pointer into the MAR. Fetch the first byte of the
next instruction. Increment the PC.

The remaining three-cycle instructions are all unique. Therefore, the CPU sequence of
events is given separately for each.

JP Instruction

Cycle 1: At the beginning of this instruction cycle, the PC is one count ahead of the ad-
dress of the JP instruction. Decode the instruction opcode. Add the lower six
bits of the contents of the IR (the JP opcode) to the lower byte of the PC.

Cycle 2: If the offset contained in the JP opcode was positive and the add performed
in Cycle 1 had a carry out (overflow), increment the upper byte of the PC. If
the offset was negative and no carry out was produced by the add in Cycle 1
(underflow), decrement the upper byte of the PC.

ARCHITECTURE 2-13

Cycle 3: Fetch the first byte of the next instruction (instruction located at the branch
address). Increment the PC.

JMP Instruction

Cycle 1: Decode the instruction opcode. Fetch the lower byte of the branch address
from program memory. Load the lower byte of the PC with the fetched ad-
dress.

Cycle 2: Load the four least significant bits of the JMP opcode stored in the IR into the
four least significant bits of the upper byte of the PC.

Cycle 3: Fetch the first byte of the next instruction (instruction located at the branch
address). Increment the PC.

LAID Instruction

Cycle 1: Decode the instruction opcode. Exchange the lower byte of the PC with the
contents of the accumulator.

Cycle 2: Fetch the byte from program memory addressed by the PC. Transfer the con-
tents of the accumulator back to the lower byte of the PC. Store the fetched
byte in the accumulator.

Cycle 3: Fetch the first byte of the next instruction. Increment the PC.

JID Instruction

Cycle 1: Decode the instruction opcode. Exchange the lower byte of the PC with the
contents of the accumulator.

Cycle 2: Fetch the byte from program memory addressed by the PC. Transfer the con-
tents of the PC back to the accumulator (restore the contents of the ACC).
Store the fetched byte in the lower byte of the PC.

Cycle 8: Fetch the first byte of the next instruction. Increment the PC.

DRSZ Instruction

Cycle 1: Decode the opcode of the instruction. Load the MAR with the address of the
register being decremented.

Cycle 2: Decrement the contents of the register addressed by the MAR. If the result is
zero, activate the Skip Logic.

Cycle 3: Load the MAR with the contents of the B pointer. Fetch the first byte of the

next instruction. Increment the PC.

2-14 ARCHITECTURE

Four-Cycle Instructions

All 4-cycle instructions except JMPL use the Memory Direct addressing mode. The
following steps outline the general sequence of events performed by the CPU during the
execution of these memory direct instructions.

Cycle 1: Decode the Memory Direct mode opcode prefix (which is already in the IR be-
cause it was fetched during the previous instruction). Fetch the memory di-
rect address from program memory and store it in the MAR. Increment the
PC.

Cycle 2: Fetch the actual opcode from program memory and store it in the IR.

Cycle 3: Execute the instruction. (The bit manipulation, conditional test, or logical/
arithmetic operation is complete at the end of this instruction cycle.)

Cycle 4: Load the contents of the B pointer into the MAR. Fetch the first byte of the
next instruction. Increment the PC.

A JMPL has the following steps:

Cycle 1: Decode the JMPL opcode. Fetch the second byte of the instruction (the high-
order byte of the branch address) and store it in IR. Increment the PC.

Cycle 2: Fetch the third byte of the instruction (the low-order byte of the branch ad-
dress) and load it into the lower byte of the PC.

Cycle 3: Load the high-order byte of the branch address from the IR into the upper
byte of the PC.

Cycle 4: Fetch the next instruction (located at the branch address). Increment the PC.

Five-Cycle Instructions

The COP800 devices have only five 5-cycle instructions. These instructions are JSR,
JSRL, RET, RETI and RETSK. All of these instructions force program branches.

The CPU performs the following steps during the JSR and JSRL instructions:

Cycle 1: Decode the opcode for the instruction. Load the MAR with the address of the
first available stack location (the address currently in SP). Decrement the
stack pointer to point to the next available stack location. If JSRL, fetch the
next byte of the instruction and increment the PC.

Cycle 2: Increment the PC. Push the low-order byte of the return address onto the
stack (store at the location addressed by MAR). Fetch the next byte of the in-
struction. Load the low-order byte of the subroutine address (addressed by
the MAR) into the PC.

Cycle 3: Load the MAR with the address of the first available stack location (the ad-
dress currently in SP). Decrement the stack pointer to point to the next avail-
able stack location.

Cycle 4: Push the high-order byte of the return address onto the stack (store at the lo-
cation addressed by MAR). If JSR, load the four bits of the high-order byte of

ARCHITECTURE 2-15

the subroutine address stored in the IR into the PC. If JSRL, load the seven
bits of the high-order byte of the subroutine address stored in the IR into the
PC.

Cycle 5: Load the contents of the B pointer into the MAR. Fetch the first byte of the
next instruction. Increment the PC.

The CPU performs the following steps during the RET, RETSK, and RETI instructions:

Cycle 1: Decode the opcode for the instruction. Increment the stack pointer to point to
the last entry on the stack. Load the MAR with the address of the last entry
in the stack (address in the updated SP).

Cycle 2: Pop the high-byte of the return address off the stack (the contents of the mem-
ory location addressed to by the MAR). Load the upper byte of the PC with
the high byte of the return address.

Cycle 3: Decode the opcode for the instruction. Increment the stack pointer to point to
the last entry on the stack. Load the MAR with the address of the last entry
in the stack (address in the updated SP).

Cycle 4: Pop the low byte of the return address off the stack (the contents of the mem-
ory location addressed to by the MAR). Load the lower byte of the PC with the
low byte of the return address.

Cycle 5: Load the contents of the B pointer into the MAR. If RETI, set the GIE bit. If
RETSK, activate skip logic to skip the instruction at the return address. Fetch
the first byte of the instruction at the return address. Increment the PC.

Seven-Cycle Instructions

The Software Trap is the only instruction which requires seven cycles to execute. Refer
to Section 2.5.3 for information on the execution of this instruction.

2.5.3 Interrupt and Error Handling

The COP800 Basic Family microcontrollers have three interrupt sources; External,
Timer 1 and Software Trap. All interrupts cause the CPU to force a jump to location 00FF
Hex in program memory. Therefore, all interrupt and error handling routines or
branches should be located at 00FF Hex.

The CPU forces a jump to 00FF Hex by jamming the INTR opcode (00) into the IR upon
detecting an interrupt or error. An interrupt that occurs while an instruction is being
executed is not acknowledged until the end of the current instruction. If the instruction
following the current instruction is to be skipped, the next instruction is skipped before
the pending interrupt is acknowledged. Once an interrupt/error is acknowledged, the
CPU requires seven cycles to perform the jump to location 00FF Hex. The sequence of
cycles is:

Cycle 1: Jam opcode 00 into the IR. If not a Software Trap, reset the GIE bit. Decre-
ment the lower-byte of the PC. (Note: The address of the instruction that was
ready to be executed is the return address to be saved on the stack. However,

2-16 ARCHITECTURE

the PC is one count ahead of the current instruction, and must therefore be
decremented before being saved on the stack.)

Cycle 2: If the decrementing of the lower-byte of the PC caused a borrow, decrement
the upper byte of the PC.

Cycle 3: Load the MAR with the address of the first available stack location (the ad-
dress currently in SP). Increment the stack pointer to point to the next byte
of data on the stack.

Cycle 4: Push the low-order byte of the return address onto the stack (store at the lo-
cation addressed by MAR). Load the low-order byte of the PC with OFF Hex.

Cycle 5: Load the MAR with the address of the first available stack location (the ad-
dress currently in SP). Decrement the stack pointer to point to the next avail-
able stack location.

Cycle 6: Push the high-order byte of the return address onto the stack (store at the lo-
cation addressed by MAR). Load the upper byte of the PC with 00 Hex.

Cycle 7 Load the contents of the B pointer into the MAR. Fetch the first byte of the
instruction located at 00FF Hex. Increment the PC.

Once a branch to location 00FF Hex occurs, the user software must poll the available
pending flags to determine the source of the interrupt. If no pending flags are set, the
software should assume a Software Trap has occurred and should take appropriate
action. Refer to the Interrupt Chapter for more information on interrupts and the
Software Trap.

2.6 RESET

The COPS800 enters a reset state immediately upon detecting a logic low on the RESET
pin. When the RESET pin is pulled to a logic high, the device begins code execution
within two instruction cycles. The RESET pin must be held low for a minimum of one
instruction cycle to guarantee a valid reset. During power-up initialization, the user
hardware must ensure that the RESET pin is held low until the COP800 is within the
specified V¢ voltage. Additionally, the user must ensure that the oscillator has had time
to stabilize. An R/C circuit on the RESET pin with a delay 5 times greater than the power
supply rise time is recommended.

All COP800 microcontrollers contain logic to initialize their internal circuitry during the
reset state. The following initializations are performed at reset:

e The Program Counter is loaded with 0000 Hex.

e All bits of the PSW and CNTRL registers are reset. This disables all interrupts,
stops Timer 1, and disables MICROWIRE/PLUS.

The Accumulator and all data memory and data registers, including the B, X and SP
pointers, are uninitialized at reset.

Refer to the device-specific chapters for details on the reset initialization of registers not
found in the COP800 microcontroller core.

ARCHITECTURE 2-17

2.7 CLOCK OPTIONS

Most COP800 parts support three clock options; crystal oscillator, RC oscillator, and
external oscillator. Depending on the device type, the clock option is either selected via a
mask option or programmed into the device by the user. Selection of a specific clock option
affects the operating frequency, clocking accuracy, and power consumption of a particular
device. Refer to the device specific data sheets to obtain accurate information on
frequency ranges, power consumption, and component values for the different oscillator
circuits.

2.7.1 Crystal Oscillator

The dedicated CKI (clock input) pin and G7 (CKO) on the COP800 devices can be
connected to make a crystal controlled oscillator as shown in Figure 2-3. If G7 is used as
the CKO pin, it is not available for general purpose use.

l CKI CKO!

R2
R L
'\,-; o=
=C2 = C1

COP820-09-F

Figure 2-3 Crystal Oscillator Circuit

2.7.2 RC Oscillator

The dedicated CKI pin can be used to construct an RC oscillator as shown in Figure 2-4.
With this option, G7 is available as a general purpose input pin.

loki cko

General Purpose Input

COP820-10-F
Figure 2-4 RC Oscillator Circuit

2-18 ARCHITECTURE

2.7.3 External Oscillator

The dedicated CKI pin can be driven by an external clock signal that meets specified duty
cycle, rise/fall times, and input levels. With this option, G7 is available as a general
purpose input pin. See Figure 2-5.

©
c
£
]
%
w

Clock

COP820-11-F
Figure 2-5 External Oscillator Circuit

ARCHITECTURE 2-19

2-20 ARCHITECTURE

Chapter 3

INTERRUPTS

3.1 INTRODUCTION

All COP800 Basic Family members have three independent interrupt sources: External,
Timer 1 and Software Trap. These interrupts may be divided into two categories,
maskable and non-maskable. The External and Timer 1 interrupts are both software
maskable. The Software Trap is non-maskable because it is used to detect errors in
program execution. The COP800 processes all interrupts similarly by halting normal
program execution and forcing a branch to program memory location 00FF Hex. The user
program determines how interrupts are prioritized and serviced. A block diagram of the
interrupt logic found in all COP800 Basic Family members is shown in Figure 3-1.

SOFTWARE
TIMER TPND
EXTERNAL —— T l —1 IPND INTERRUPT

EDGE SELECTOR LOGIC
ENTI ENI

—{ GIE

TL/DD/10802-8

Figure 3-1 Interrupt Block Diagram

Maskable interrupts, in addition to the External and Timer 1 interrupts, are available
on some devices. These interrupts are discussed in detail in the appropriate device
specific-chapter near the end of this manual. General information regarding interrupt
processing and maskable interrupts contained in this chapter pertains to all COP800
interrupts.

3.2 INTERRUPT PROCESSING

An interrupt is an asynchronous event which may occur before, during, or after an
instruction cycle. Any interrupt which occurs during the execution of an instruction is not
acknowledged until the start of the next normally executed instruction. If the next
normally executed instruction is to be skipped, the skip is performed before the pending
interrupt is acknowledged. All maskable interrupts set their associated interrupt
pending flags immediately upon occurrence.

INTERRUPTS 3-1

At the start of an interrupt acknowledgment, the CPU control logic halts normal
program execution by jamming a zero opcode (00) into the instruction register. The
microcontroller then performs the following actions:

1. Iftheinterruptis not a software trap, the Global Interrupt Enable bit is reset.
This prevents other MASKABLE interrupts from being acknowledged while
another interrupt is being serviced. The software trap does not reset GIE.
Therefore, the software trap may be interrupted by other interrupts (causing
nested interrupts).

2. The address of the next normally executed instruction is saved on the system
stack. (A software trap error instruction pushes its own address onto the
system stack.)

3. The Program Counter is loaded with 00FF Hex. This forces a jump to the
user’s general interrupt service routine, which is always stored at location
00FF Hex in program memory.

The COP800 requires seven instruction cycles to perform the actions listed above.
Maskable interrupts that occur during this time still set their associated interrupt
pending flags. Detailed information about the microcontroller’s processing of interrupts
is provided in Section 2.5.3, Interrupt and Error Handling.

The interrupt service routine at location 00FF Hex should determine the source(s) of the
interrupt. This is accomplished by reading the interrupt pending fiags. If more than one
pending flag is set, the software must determine the relative priority of the interrupts. If
no pending flags are set, the software should assume a software trap has occurred. Once
the source and priority of an interrupt have been determined, the program should branch
to an appropriate service routine. Since all interrupts force a branch to location 00FF
Hezx, all necessary context switching (saving of the accumulator, B pointer etc.) may be
performed prior to branching to a specialized service routine. At the end of the service
routine, the software should execute an instruction to return to normal program flow.

3.3 MASKABLE INTERRUPTS

The COP800 allows all maskable interrupts to be individually enabled and disabled in
software. Each maskable interrupt has an associated enable bit which is used for this
purpose. In addition, each interrupt has an associated pending flag. This pending flag is
always set by hardware immediately upon the occurrence of an interrupt regardless of
whether or not the associated enable bit is set. The pending flag is polled by the user to
determine the source of an interrupt. Interrupt enable bits are set and reset by software.
Interrupt pending flags are set by hardware but must be reset by software. Pending flags
may also be set by software to force interrupts. When setting a maskable interrupt
enable bit, it should always be considered whether or not a previously pending
occurrence of the interrupt is to be acknowledged. If previous occurrences are to be
ignored and only new occurrences acknowledged, then the associated pending bit should
be reset before the enable bit is set.

All maskable interrupts which have been individually enabled must be globally enabled/
disabled by setting/resetting the Global Interrupt Enable (GIE) bit located in the

3-2 INTERRUPTS

Processor Status Word (PSW) register. An interrupt will only be acknowledged if its
associated interrupt enable bit and the GIE bit are set.

The acknowledgment of a maskable interrupt always forces the reset of the GIE bit. This
prevents subsequent maskable interrupts from interrupting a service routine already in
progress. Interrupts that occur during the servicing of a previous interrupt are not lost.
These interrupts set their associated interrupt pending flags, and are acknowledged
after the return from the current interrupt service routine. Resetting of the GIE bit does
not prevent a non-maskable software trap from interrupting the microcontroller.

The interrupt service routine should poll all pending flags to determine the source of the
interrupt. The service routine must then reset the pending bit of the interrupt being
processed. This is normally done at the start of the interrupt service routine in order to
avoid missing a fast second occurrence of the same interrupt. (Interrupt pending bits are
NOT reset by hardware.) Maskable interrupts may be nested by setting the GIE bit at
the start of or during the interrupt service routine. This procedure of nesting interrupts
is not recommended except in very special cases. Great caution must be exercised in
using nested interrupts because of the potential for stack overflow, as well as the
possibility of over-writing registers used in the interrupt service routines.

Returning from a maskable interrupt service routine may be accomplished with any one
of the following instructions; RET, RETSK or RETI. However, it is recommended that the
RETI (return from interrupt) instruction be used. This instruction pops the last saved
entry from the stack and places it in the Program Counter. In addition, it sets the GIE
bit in order to enable further interrupts. The user may choose to set the GIE bit in
software and use the RET (return from subroutine) or RETSK (return and skip)
instruction.

3.3.1 Timer 1 Interrupt

Timerl can be configured to generate an interrupt on one of two conditions. The PWM
and External Event Counter modes of operation allow an interrupt on timer underflow.
The Input Capture mode of operation allows an interrupt on a positive or negative edge
transition on TIO (Pin G3). The same interrupt enable flag (ENTI) and interrupt pending
flag (TPND) are used for both timer interrupts. These flags are located in the PSW
register. Details on setting up the Timerl interrupt are given in Chapter 4.

If the timer is not used, the TIO pin (G3) may function as an additional independent
external interrupt. In order to set up this second external interrupt, the timer is placed
in the Input Capture Mode. The timer control bit TC1 is used to select the edge polarity.
The Timer Interrupt Enable (ENTI) and Timer Interrupt Pending (TPND) bits located in
the PSW register are used as the enable and pending flags.

3.3.2 External Interrupt

The GO pin on all COP800 devices may be used as an external interrupt input. If used as
an external interrupt, the pin must be configured as an input as described in Chapter 2.
The edge polarity of the interrupt may be selected by writing to the IEDG (External
Interrupt Edged) bit located in the PSW register. Writing a zero selects a positive edge.
Writing a one selects a negative edge. The interrupt is enabled when both the ENI

INTERRUPTS 3-3

(External Interrupt Enable) bit and the GIE bit are set. The occurrence of an external
interrupt will set the IPND (External Interrupt Pending) flag, also located in the PSW
register.

3.4 SOFTWARE TRAP

The software trap interrupt is used to detect errors in program execution. These errors
result from a variety of conditions including: brownouts, power transients, noise,
runaway programs, over-popping of the stack and accessing program memory locations
which are not physically present in the device.

A software trap occurs when a zero opcode instruction (INTR) is executed as part of the
normal instruction sequence fetched from program memory. Generally, a zero opcode is
only executed to force the acknowledgment of a hardware interrupt. In these cases, this
opcode is not a part of the normal instruction sequence but is jammed into the instruction
register by the interrupt logic. The execution of a zero opcode (INTR) when an interrupt
is not pending is an error, and it is this error which actually results in a software trap.
Such an error may occur when an instruction is fetched from beyond the available
program memory space, when the stack is over-popped, or as a result of some transient
condition. Reading from unavailable program memory always returns zeros (INTR).
Thus, instruction fetches from these locations load zero opcodes into the instruction
register, and thereby create a software trap. Over-popping a stack which has been
initialized to the top of the available data memory space loads the Program Counter with
FFFF Hex. This indirectly forces a software trap by loading the Program Counter with
the address of an unavailable program memory location. If unused program memory is
filled with all zeros, then a software trap will also occur if a runaway program
inadvertently branches to an unused program memory location.

Software traps, like hardware interrupts, force a jump to program memory location 00FF
Hex. However, software traps do not set an interrupt pending flag or reset the GIE bit.
The code located at 00FF Hex can determine whether or not a software trap has occurred
by polling all maskable interrupt pending flags. If no flags are set, it can be assumed that
a software trap has occurred. Since the GIE bit is not reset upon the occurrence of a
software trap, a software trap may be interrupted by another interrupt.

Whenever a software trap occurs, it is recommended that the user re-initialize the stack
pointer and do a recovery procedure. The recovery procedure should be similar to a device
RESET start-up but may not contain all of the same initialization procedures. The user
should never simply execute a RET or RETI instruction to exit from a software trap. This
is because the return address pushed onto the stack by the software trap is the address
of the instruction that produced the error. An infinite loop of software traps is generated
by returning to this instruction. The user may return to the instruction following the trap
instruction by placing an RETSK at the end of the software trap service routine.

3-4 INTERRUPTS

Chapter 4

TIMER

4.1 INTRODUCTION

The COP800 device contains a versatile 16-bit timer/counter that can satisfy a wide
range of application requirements. The timer can be configured to operate in any of three
modes:

e Pulse Width Modulation (PWM) mode: generates pulses of a specified width
e External event counter mode: counts occurrences of an external event

e Input capture mode: measures the elapsed time between occurrences of an exter-
nal event

4.2 TIMER/COUNTER BLOCK

The timer/counter block (the section of the device containing the timer circuitry) consists
of a 16-bit counter/timer register and an associated 16-bit autoload/capture register
(designated RA). The timer and the associated autoload register are each organized as a
pair of 8-bit memory-mapped registers. The timer bytes reside at addresses OOEA and
00EB, while the associated autoload register bytes reside at addresses 00EC and 00ED.

The timer/counter block uses one pin, designated TIO, to support the I/O requirements
of the timer. The TIO feature is an alternate function of G3 (Port G, bit 3).

The timer can be started or stopped at any time under program control. When running,
the timer counts down (decrements). Depending on the operating mode, the timer counts
either instruction clock pulses (the clock used for executing instructions) or transitions
on the TIO pin. Occurrences of the timer underflow (transition from 0000 to FFFF) can
either generate an interrupt or toggle the TIO pin, also depending on the operating mode.

When timer interrupts are enabled, the source of the interrupt depends on the timer
operating mode: either a timer underflow, or an input signal received on the TIO pin.

4.3 TIMER CONTROL BITS

The timer is controlled by six memory-mapped control bits in the PSW (Processor Status
Word) and CNTRL (Control) registers of the CPU core. These bits control the operation
of the timer by enabling or disabling the timer interrupt, by setting the operating mode,
and by starting and stopping the timer. The control bits operate as described in Tables 4-1
and 4-2.

TIMER 4-1

Table 4-1 Timer Control Bits

Register/Bit | Name

Function

PSW/Bit 5 TPND | Timer interrupt pending flag: 1 = Timer inter-
rupt pending, 0 = Timer interrupt not pending

PSW/Bit 4 ENTI | Enable timer interrupt: 1 = Timer interrupt
enabled, 0 = Timer interrupt disabled

CNTRL/Bit 7 | TC3 Timer control bit 3 (see table 4-2)

CNTRL/Bit 6 | TC2 Timer control bit 2 (see table 4-2)

CNTRL/Bit 5 | TC1 Timer control bit 1 (see table 4-2)

CNTRL/Bit 4 | TRUN | Timer run: 1 = Start timer, 0 = Stop timer

Table 4-2 Timer Mode Control Bits

CNTRL

4-2

Bits 7-6-5 Operating Mode T Interrupt Timer Counts On

0-0-0 External event counter | Timer underflow TIO positive edge
with autoload register

0-0-1 External event counter | Timer underflow TIO negative edge
with autoload register

0-1-0 Not Allowed — —

0-1-1 Not Allowed — —

1-0-0 PWM: timer with auto- | Timer underflow Instruction clock
load register

1-0-1 PWM: timer with auto- | Timer underflow Instruction clock
load register; toggle TIO
out

1-1-0 Timer with input cap- TIO positive edge | Instruction clock
ture register

1-1-1 Timer with input cap- TIO negative edge | Instruction clock
ture register

TIMER

4.4 TIMER OPERATING MODES

The timer can be configured to operate in any one of three modes. Within each mode,
there are options related to the use of the TIO pin.

The Pulse Width Modulation (PWM) mode can be used to generate precise pulses of
known width on the TIO pin (configured as an output). The timer is clocked by the
instruction clock. An underflow causes the timer register to be reloaded with the value in
the RA register, and optionally, causes the TIO output to toggle.

The external event counter mode can be used to count occurrences of an external event.
The timer is clocked by the signal appearing on the TIO pin (configured as an input). An
underflow causes the timer register to be reloaded with the value in the RA register.

The input capture mode can be used to precisely measure the frequency of an external
clock that is slower than the instruction clock, or to measure the elapsed time between
external events. The timer is clocked by the instruction clock. A transition received on
the TIO pin (configured as an input) causes a transfer of the timer contents to the RA
register.

4.4.1 PWM Mode

In the Pulse Width Modulation (PWM) mode, the timer counts down at the instruction
clock rate. When an underflow occurs, the contents of the RA register are transferred into
the timer register, and counting proceeds downward from the loaded value. If the timer
interrupt is enabled, an interrupt occurs with each underflow.

The timer can be configured to toggle the TIO output bit upon underflow. In this case, the
width of pulses on the TIO pin are controlled by the value stored in the RA register.

A block diagram of the timer operating in the PWM mode is shown in Figure 4-1.

16-BIT AUTO
RELOAD REG.

TIMER UNDERFLOW
{J l”’INTERRUPT

INSTRUCTION 16-BIT TIMER/ G3 DATA OUTPUT TIO
CLOCK — COUNTER TOGGLE LATCH [”ONPING3

INTERNAL DATA BUS |

TSP-COP820-03

Figure 4-1 Timer in PWM Mode

The following steps can be used to operate the timer in the PWM mode. In this example,
the TIO output pin is toggled with every timer underflow, and the “on” and “off” times for
the TIO output are set to different values. (The TIO output can start out either high or
low; follow the instructions shown in parentheses to start it low.)

TIMER 4-3

1. Configure the TIO pin as an output by setting bit 3 in the Port G configuration
register.

2. Initialize the TIO pin value to 1 (or 0) by setting (or clearing) the bit 3 in the
Port G data register.

3. Load the PWM “on” (or “off”) time into the timer register.
4. Load the PWM “off” (or “on”) time into the RA register.

5. Set the timer control bits of the CNTRL register to select the PWM mode, and
to toggle the TIO output with every timer underflow (see Table 4-2).

6. Set the TRUN (Timer Run) bit in the CNTRL register to start the timer.

7. After the timer underflows, update the RA register by writing the desired val-
ue for the next “on” or “off” time period. Either polling or interrupts can be
used to synchronize loading of the RA register with the operation of the timer.
To use interrupts, you must write the proper value to the PSW register before
starting the timer: clear the TPND (Timer Interrupt Pending) flag, set the
ENTI (Enable Timer Interrupt) bit, and set the GIE (Global Interrupt En-
able) bit.

The selectable range for the PWM “on” and “off” times is 1 to 65,536 clock cycles. For a
10 MHz clock, this corresponds to a time range of 1 microsecond to 65.5 milliseconds. The
pulse period (“on” plus “off” times) can then range from 2 microseconds to 131

milliseconds.

4.4.2 External Event Counter Mode

The external event counter mode is similar to the PWM mode, except that instead of
counting instruction clock pulses, the timer counts transitions received on the TIO pin
(configured as an input). The TIO pin should be connected to an external device that
generates a pulse for each event to be counted.

The timer can be configured to sense either positive-edge or negative-edge transitions on
the TIO pin. The maximum frequency at which transitions can be sensed is one-half the
frequency of the instruction clock.

As with the PWM mode, when an underflow occurs, the contents of the RA register are
transferred into the timer register, and counting proceeds downward from the loaded
value. If the timer interrupt is enabled, an interrupt occurs with each underflow.

A block diagram of the timer operating in the external event counter mode is shown in
Figure 4-2.

The following steps can be used to operate the timer in the external event counter mode.

1. Configure the TIO pin as an input by clearing the bit 3 in the Port G configu-
ration register.

2. Load the initial count into the timer register and also into the RA register.
When this number of external events is detected, the counter will reach zero

4-4 TIMER

l INTERNAL DATA BUS |

¢

16-BIT AUTO
RELOAD REG.

U

INPUTTIO] 16-BIT TIMER/ | , TIMER UNDERFLOW
ON PIN G3 COUNTER INTERRUPT

TSP-COP820-04

Figure 4-2 Timer in External Event Counter Mode

although it will not overflow until the next event is detected. Therefore, to
count N pulses, the value N-1 should be loaded into the timer and RA registers.

3. Set the timer control bits of the CNTRL register to select the external event
counter mode, and to select the type of transition to be sensed on the TIO pin
(positive-edge or negative-edge; see Table 4-2).

4. Set the TRUN (Timer Run) bit in the CNTRL register to start the timer.

5. The software should take whatever action is required when the timer under-
flows. Underflow can be detected either by polling the timer register or by us-
ing the timer interrupt. To use interrupts, you must write the proper value to
the PSW register before starting the timer: clear the TPND (Timer Interrupt
Pending) flag, set the ENTI (Enable Timer Interrupt) bit, and set the GIE
(Global Interrupt Enable) bit.

AAS
Zoxe

3 iput Capture M

In the input capture mode, the timer counts down at the instruction clock rate. A
transition received on the TIO pin (configured as an input) causes a transfer of the timer
contents to the RA register. The values captured in the RA register at different times
reflect the elapsed time between transitions on the TIO pin.

The timer can be configured to sense either positive-edge or negative-edge transitions. If
the timer interrupt is enabled, the sensed transition on the TIO pin also triggers an
interrupt. Timer underflows have no significance in this mode.

A block diagram of the timer operating in the input capture mode is shown in Figure 4-3.
The following steps can be used to operate the timer in input capture mode.

1. Configure the TIO pin as an input by clearing bit 3 in the Port G configuration
register.

2. Set the timer control bits of the CNTRL to select the input capture mode, and
to select the type of transition to be sensed on the TIO pin (positive-edge or
negative-edge; see Table 4-2).

TIMER 4-5

| INTERNAL DATA BUS |

INTERRUPT ()

INPUT TIO > 16-BIT
ON PIN G3 CAPTURE REG.

INSTRUCTION

cLock — 16-BIT TIMER

TSP-COP820-05

Figure 4-3 Timer in Input Capture Mode

3. Set the TRUN (Timer Run) bit in the CNTRL register to start the timer.

4. Each time a transition is sensed on the TIO pin, the contents of the timer reg-
ister are transferred to the RA register, and an interrupt is triggered (if en-
abled). The interrupt service routine can record and compare the RA register
contents to determine the elapsed time between events. To use interrupts,
you must write the proper value to the PSW register before starting the tim-
er: clear the TPND (Timer Interrupt Pending) flag, set the ENTI (Enable
Timer Interrupt) bit, and set the GIE (Global Interrupt Enabie) bit.

4-6 TIMER

Chapter 5

MICROWIRE/PLUS

5.1 INTRODUCTION

MICROWIRE/PLUS™ is a synchronous serial communication system that allows the
COP800 microcontroller to communicate with any other device that also supports the
MICROWIRE/PLUS system. Examples of such devices include A/D converters,
comparators, EEPROMs, display drivers, telecommunications devices, and other
processors (e.g., HPC and COP400 processors). The MICROWIRE/PLUS serial interface
uses a simple and economical 3-wire connection between devices.

Several MICROWIRE/PLUS devices can be connected to the same 3-wire system. One of
these devices, operating in what is called the master mode, supplies the synchronous
clock for the serial interface and initiates the data transfer. Another device, operating in
what is called the slave mode, responds by sending (or receiving) the requested data. The
slave device uses the master's clock for serially shifting data out (or in), while the master
device shifts the data in (or out).

On the COP800 device, the three interface signals are called SI (Serial Input), SO (Serial
Output), and SK (Serial Clock). To the master, SO and SK are outputs (connected to slave
inputs), and SI is an input (connected to slave outputs).

The COP800 can operate either as a master or a slave, depending on how it is configured
by the software. Figure 5-1 shows an example of how several devices can be connected
together using the MICROWIRE/PLUS system, with the COP800 (on the left) operating
as the master, and other devices operating as slaves. The protocol for selecting and
enabling slave devices is determined by the system designer.

CHIP SELECT LINES 5,
/0 8-BIT LCD 1’0
LINES] /\\//ERCT%AA- égzugT D'E'J_AL DISPLAY LINES
PROM DRIVER
coP DS8907 \ coP
<_‘> MR COP 43X coparz | | S0P <:>
po pi ctk| | bo DI cLk plckll ook

st v v so

o) si

SK SK

TSP-COP820-06

Figure 5-1 MICROWIRE/PLUS Example

MICROWIRE/PLUS 5-1

5.2 THEORY OF OPERATION

Figure 5-2 is a block diagram illustrating the internal operation of the MICROWIRE/
PLUS circuit of the COP800.

p—
BUSY
> FLAG
» SO
LMSB LSB
SIO REGISTER s
D ‘—_—’ (8 BITS)
A % SHIFT CLOCK
A
A]
INSTRUCTION DIVIDE-BY CLOCK
8 cLock ~* CountER [seLect [¢—*> SK
s
CNTRL
REGISTER

TSP-COP820-07

Figure 5-2 MICROWIRE/PLUS Circuit Block Diagram

An 8-bit shift register, called the SIO (Serial Input/Output) register, is used for both
sending and receiving data. In either type of data transfer, bits are shifted left through
the register. When a data byte is being sent, bits are shifted out through the SO output,
most significant bit first. When a data byte is being received, bits are shifted in through
the SI input, most significant bit first also.

The SIO register is memory-mapped in the microcontroller's data memory space,
allowing the software to write a data byte to be sent, or to read a full data byte that has
been received. The Busy flag in the PSW register indicates whether the SIO register is
ready to be read or written. Instead of polling the Busy flag, you can use a carefully timed
software loop to synchronize the reading or writing of the SIO register to completion of
each 8-bit shift operation.

The software should write the SIO register only when the SK clock is low. A data byte is
generally written at the end of an 8-bit shifting cycle, when the SK clock is low anyway,
so this is generally not a problem. If the user inadvertently writes to the register when
SK is high, unknown data may be placed in the register.

5.2.1 Timing
Timing of the MICROWIRE/PLUS interface is shown in Figure 5-3.

The SK clock signal is generated by the master device. Read and write operations are
synchronized to this signal. When a data byte is being sent, the output data on SO is
clocked out on the falling edge of the SK clock, as indicated by the solid arrows in the
timing diagram. The first bit, however, becomes valid immediately after the SIO register

5-2 MICROWIRE/PLUS

BUSY J

SK

so ?,\',}375?“t>< Bit e>< Bit5, XBn 4 >< Bita: Y Bit2 Bit ¥)(ﬁ_’g%) X Bvssy

[Bit7In Bito \/ Bit7 In |
Si (MSB) X Bit GX Bit 5 X Bit 4 X Bit 3 Bit 2 Bit 1 (LSB) (MSB)

COP800-09

Figure 5-3 MICROWIRE/PLUS Interface Timing

is loaded with the data byte to be sent. When a data byte is being received, the input data
on SI is sampled on the rising edge of the SK clock, as indicated by the dashed arrows in
the timing diagram.

5.2.2 Port G Configuration

The three MICROWIRE/PLUS signals SO, SK, and SI are alternate functions of Port G
pins G4, G5, and G6, respectively. To enable the use of these pins for the MICROWIRE/
PLUS interface, the MSEL (MICROWIRE Select) bit of the CNTRL register must be set
to 1. (The SL1 and SLO bits, also in the CNTRL register, are used to control the SK clock
speed in master mode, as described below.)

Port G must be properly configured for operation of the interface. This is accomplished
by writing certain bit values to the Port G configuration register. Pin G4 (SO) should be
configured as an output for sending data. Pin G5 (SK) should be configured as an output
in master mode, or as an input in slave mode. G6 (SI) serves only as an input, so it need
not be specifically configured as such. The Port G configuration register programming
options are summarized in Table 5-1.

5.2.3 SK Clock Operation

When the COP800 operates in master mode, it generates the SK clock signal. A divide-
by counter lowers the frequency of the instruction clock, producing an SK clock period
that is 2, 4, or 8 times the period of the instruction clock. The divide-by factor is
programmed by writing two bits to the CNTRL register, designated SL1 and SLO (Select
1 and Select 0 bits), as indicated in Table 5-2.

The internal divide-by counter is reset when the MICROWIRE Busy flag (described
below) goes to 1. Because of this, the divide-by counter always starts from 0 at the
beginning of an 8-bit shift cycle, ensuring uniform SK clock pulses.

When the COP800 microcontroller operates in slave mode, the SK clock is generated by
the external master device. In this case, SK is an input, and the SK clock-generating
circuit of the COP800 is inactive.

MICROWIRE/PLUS 5-3

Table 5-1 Port G Configuration Register Bits

Port G Config. | MICROWIRE G4 Pin G5 Pin G6 Pin
Reg. Bits G5-G4 Operation Function | Function | Function
0-0 Slave, data in TRI-STATE | SK Input | SIInput
(unused)
0-1 Slave, data out | SO Output | SKInput | SIInput
and data in
1-0 Master, data in | TRI-STATE | SK Output | SI Input
(unused)
1-1 Master, data out | SO Output | SK Output | SI Input
and data in
Table 5-2 Master Mode Clock Select Bits
SL1 (CNTRL Bit 1) | SLO (CNTRL Bit 0) | SK Clock Period
0 0 2 times t,
0 1 4 times t,
1 X 8 times t,

5.2.4

A flag bit in the PSW (Processor Status Word) register indicates the status of the SIO
shift register. To initiate an 8-bit shifting operation, set this bit to 1. Shifting then starts
and continues automatically at the SK clock rate. With each shift, the high-order bit of
the register is shifted out on SO (if enabled), and simultaneously, the low-order bit of the
register is shifted in from SI.

Busy Flag

When the 8-bit shifting operation is finished, the Busy flag is automatically reset to 0 by
hardware. The software can determine whether or not shifting has been completed by
polling this flag. When the flag is found to be 0, the software can write the next byte to
be sent (or read the full byte just received) and then set the Busy flag to initiate transfer

of the next byte.

The software can control the timing of the transfer by the setting and resetting the Busy
flag. The handshaking protocol between the master and slave should ensure that the
slave device is given enough time to respond after being enabled by the master. An
example of a MICROWIRE/PLUS master/slave protocol is provided in the applications
chapter.

The software program can reset the Busy bit directly by writing to the PSW register. This
stops shifting immediately.

5-4 MICROWIRE/PLUS

It is possible to eliminate the need for polling the Busy bit, thereby speeding up the
transfer. This is accomplished by writing a software loop that executes in the exact
amount of time necessary to allow an 8-bit shift operation. At the end of the loop, the
software initiates the next 8-bit transfer, without checking the Busy bit. This is called the
MICROWIRE “fast burst” mode. An example of this type of program is presented in the
applications chapter.

Some external devices may require a continuous bit stream, without any pauses between
bytes. This mode, called the MICROWIRE “continuous” mode, is also accomplished by
writing a software loop that executes in a specific number of cycles. The clock divide-by
factor must be 8. An example of this type of program is presented in the applications
chapter.

When the COP800 operates in slave mode, the Busy flag should be set only when the SK
clock signal (an input) is low. This is because the Busy bit is ANDed internally with the
SK signal to produce the clock-shifting signal. If the Busy flag is set while SK is already
high, the current SK pulse is gated in immediately, resulting in a clock pulse with an
unknown width (perhaps very narrow), causing unreliable shifting.

5.3 MASTER MODE OPERATION EXAMPLE

When the COP800 operates in master mode, it generates the SK clock and initiates the
transfer. The application software can perform a data transfer using the numbered steps
shown below.

1. Write the proper value to the CNTRL register. To enable use of the Port G
pins, set the MSEL bit. To set the divide-by factor for the SK clock, write the
desired 2-bit value to the SL1 and SLO bits (Table 5-2).

2. Write the proper value to the Port G configuration register, bits G5 and G4,
to make the G5 (SK) pin an output and the G4 (SO) pin either TRI-STATE or
an output, depending whether or not the COP800 is transmitting (Table 5-1).

3. Ifnecessary, enable the desired slave device.
4. Ifsending data, write the data byte to the SIO register.

5. Set the Busy flag in the PSW register to initiate the transfer. Shifting pro-
ceeds automatically at the SK clock rate. The Busy flag is automatically reset
upon completion of the 8-bit transfer.

6. Run in a loop and test the Busy flag for completion of the 8-bit transfer.
7. Ifreceiving data, read the data byte in the SIO register.
8. Repeat steps 4 through 7 until all data bytes are transferred.

5.4 SLAVE MODE OPERATION EXAMPLE

When the COP800 operates in slave mode, the external master device generates the SK
clock and initiates the transfer; SK is an input to the COP800. The application software

MICROWIRE/PLUS 5-5

can set up the COP800 device to allow a data transfer using the numbered steps shown
below.

1. To enable use of the Port G pins, set the MSEL bit of the CNTRL register.

2. Write the proper value to the Port G configuration register to make the G5
(SK) pin an input and the G4 (SO) pin either TRI-STATE or an output, de-
pending on whether or not the COP800 is transmitting (Table 5-1).

3. If sending data, write the data byte to the SIO register.

4. Set the Busy flag in the PSW register to allow the transfer. This should be
done only when the SK signal is low. The handshaking protocol between the
master and slave should ensure that the COP800 is given enough time to set
the Busy flag before the data transfer starts. Once started, shifting proceeds
at the SK clock rate. The Busy flag is automatically reset upon completion of
the 8-bit transfer.

5. Run in a loop and test the Busy flag for completion of the 8-bit transfer.
6. Ifreceiving data, read the data byte in the SIO register.
7. Repeat steps 3 through 6 until all data bytes are transferred.

5-6 MICROWIRE/PLUS

Chapter 6
POWER SAVE MODE

6.1 INTRODUCTION

The COP800 supports a power-save mode of operation called the HALT mode. In this
mode of operation, all internal processor activity stops and power consumption is reduced
to a very low level. The processor can be forced to exit the HALT mode and resume normal
operation at any time.

The fully static architecture of the COP800 allows the state of the microcontroller to be
absolutely frozen. This is accomplished by stopping the internal clock of the device. In
addition to stopping the internal clock, the controller stops the CKI pin from oscillating
during the HALT mode if the R/C or Crystal clock is selected.

During normal operation, typical power consumption is in the range of 1 to 10
milliamperes. The actual power consumption for a device depends heavily on the clock
speed and operating voltage used in an application. In the HALT mode, the device draws
only a small amount of leakage current, plus any current necessary for driving the
outputs. Typically, power consumption is reduced to less than 1 microampere. Since total
power consumption is affected by the amount of current required to drive the outputs, all
I/Os should be configured to draw minimal current, if possible, prior to entering the
HALT mode. In order to reduce power consumption even further, the power supply (Vo)
can be reduced to a very low level during the HALT mode that guarantees the status of
the RAM only. The allowed lower voltage level (Vr) is specified in the device datasheet.

There are two ways to enter the Halt mode. One method is to simply stop the processor
clock (if the hardware implementation allows it). The other method is to set bit 7 of the
Port G data register.

6.2 CLOCK-STOPPING METHOD

The clock-stopping method of entering the Halt mode can be used only if the hardware
implementation of the processor clock allows it. If a crystal or R-C circuit is used, there
is no practical way to stop the clock, and this method cannot be used. However, if the
clock signal is generated externally and supplied to the CKI input, the external clock
circuit can simply stop the clock at any time.

The clock signal at CKI can be stopped in either state (high or low). When the clock stops,
the COP800 stops running but maintains all register and RAM contents. Power
consumption is reduced to a very low level. However, when the clock starts running
again, the processor begins running again from the point at which it had stopped.

POWER SAVE MODE 6-1

6.3 PORT G METHOD

In the Port G method, the device enters the HALT mode under software control when the
Port G data register bit 7 is set to 1. All processor action stops immediately, and power
consumption is reduced to a very low level.

From this state, there are two ways to exit the Halt mode and resume normal operation.
One method is to supply a low-to-high transition on the G7 input pin. The other method
is to simply reset the device.

Using the G7 input pin is possible only if an external clock signal is supplied to CKI or
an R-C circuit is being used. If a crystal circuit is being used, the G7/CKO pin is used as
CKO, and is therefore unavailable for use as a HALT/Restart pin. If the G7 pin is
available, a low-to-high transition on the pin takes the processor out of the Halt mode,
and the program execution resumes from the point at which it stopped. In order to ensure
accurate operation upon start-up of the device, the NOP (no-operation) instruction
should follow the enter HALT instruction in the user’s program.

A device Reset, which is invoked by a low-level signal on the RESET input pin, takes the
device out of the Halt mode and starts execution from address 0000H. The initialization
software should determine what special action is needed, if any, upon start-up of the
device. The initialization of all registers following a RESET exit from HALT is discussed
in Section 2.6 and the device specific chapters.

6-2 POWER SAVE MODE

Chapter 7
INPUT/OUTPUT

7.1 INTRODUCTION

All COP800 family devices have four dedicated input pins (RESET, V¢, GND, CKI) and
at least one bidirectional I/O port. Additional bidirectional I/O ports, dedicated input
ports, and dedicated output ports are available on higher pin-count packages for some
devices. (Refer to the device specific chapters for additional information on available
ports, packages, and pinouts.) The RESET, V¢, GND and CKI pins are used for reset,
power supply, ground, and clock input, respectively. The bidirectional I/Os may be
configured in software as Hi-Z input, weak pull-up, or push-pull output. These pins may
be used as general purpose input/output pins or for selected alternate functions. The
dedicated input and dedicated output ports may also be used as general purpose pins or
for selected alternate functions. Individual port descriptions are given in the following
sections of this chapter. Figure 7-1 contains a block diagram of the bidirectional,
dedicated output, and dedicated input port types.

BIDIRECTIONAL /O PORT
PIN
DATA I
REGISTER
I
N
T CONFIGURATION
REGISTER
E
R
N
A
L
OUTPUT-ONLY PORT PIN
B DATA
U REGISTER
s
INPUT-ONLY PORT N

TSP-COP820-08
Figure 7-1 COP800 Port Structure

INPUT/OUTPUT 7-1

72 PORTC

Port C is not available on all COP800 devices. If present, Port C is a software configurable
I/O port. All of the Port C pins are available for general purpose use. Three memory
addresses are allocated to Port C. One address is used to read the port pins directly. The
other two addresses are used to access the port configuration register and the port data
register. The configuration and data registers’ bits are used to set-up the individual pins
of Port C as described in Section 2.3.3.

Any package which has a Port C with less than 8 pins contains unbonded pins. The user’s
software should write a “1” to the missing pins configuration register bits. This configures
unbonded pins as outputs and reduces the leakage current of the part.

7.3 PORTD

Port D is not available on all COP800 devices. If present, Port D is a dedicated output
port with one associated memory address. This address is used to access the port data
register. A Port D pin may be individually configured to a logic high or low by writing a
one or zero, respectively, to the associated data register bit. These pins are all available
for general purpose use.

Port D outputs have high-sink drive capability. Refer to the COP800 datasheets for more
information on the electrical specs of Port D.

Port D is preset high when RESET goes low, and the D2 pin is sampled. If D2 is held low
during the reset state, the COP800 microcontroller enters a special mode of operation
upon exiting the reset state. This special mode is used for testing purposes. In order to
avoid entering this mode, the hardware designer should ensure D2 is not pulled low
during reset.

74 PORTG

Port G is an input/output port which is available on all COP800 devices. The number of
pins associated with this port varies according to the device and package. The G6 pin, if
available, is always an input pin. The G7 pin is either an input or output depending on
the oscillator mask option selected. With an RC oscillator or external clock, the pin is
available as a general purpose input and HALT/Restart pin (see Chapter 6). With the
crystal oscillator option, the pin is a dedicated clock output (CKO) pin. All other Port G
pins are software configurable bi-directional input/outputs and are available for general
purpose use.

Three memory addresses are assigned to this port. One address is used to read the actual
port pins. The other two addresses are used to access the port data register and the port
configuration register. The port registers’ Bits 0-5 are used to individually configure the
port pins GO through G5 as described in Section 2.3.3. Bits 6 and 7 of the Port G
configuration register, and Bit 6 of the Port G data register are reserved. These bits
always read zero, and writing a value to these bits has no effect. Bit 7 of the Port G data
register is used to place the COP800 microcontroller in HALT mode. (See Chapter 6.)

7-2 INPUT/OUTPUT

Most of the Port G pins are assigned optional alternate functions. The functions include
but are not limited to: timer interface control, external interrupt, and MICROWIRE/
PLUS interface. Alternate pin functions are listed in Section 7.7, and discussed in more
detail in chapters devoted to specific COP800 features.

All Port G pins have Schmitt Triggers on their inputs. Any package which has a Port G
with less than 8 pins contains unbonded pins. The user’s software should write a “1” to
the missing pins configuration register bits. This configures unbonded pins as outputs
and reduces the leakage current of the part.

7.5 PORTI

Port I is not available on all COP800 devices. If present, Port I is a dedicated input port
with one associated memory address. This read only address is used to access the input
directly at the port pins.

All Port I pins are Hi-Z inputs, and must be pulled to a logic high or low externally. If a
device has a Port I with less than 8 pins, the unavailable pins are unterminated. A read
operation from these unterminated pins returns unpredictable values. The user should
ensure that software takes this into account by either masking out these inputs or
restricting the Port I accesses to bit operations only.

NOTE: Unterminated Port I pins draw power only when addressed (i.e., in short
spikes).

7.6 PORTL

Port L is a bi-directional input/output port. The number of pins associated with this port
varies according to the device and package. All Port L pins are available for general
purpose use. Three memory addresses are allocated to Port L. One address is used to read
the port pins directly. The other two addresses are used to access the port configuration
register and the port data register. The configuration and data registers’ bits are used to
set-up the individual pins of Port L as described in Section 2.3.3.

In some COP800 devices, the Port L pins have been assigned optional alternate
functions. Alternate pin functions, such as multi-input wakeup, are discussed in more
detail in the device specific chapters.

Devices which support multi-input wakeup on the Port L pins have Schmitt Triggers on
all Port L inputs. Some COP800 devices have high sink capabilities on Port L. Refer to
the COP800 datasheets for more information on the Port L electrical characteristics.

7.7 ALTERNATE PORT FUNCTIONS

This section lists the alternate functions available on the Port G pins. For information on
the alternate functions of pins in Ports C, D, I and L refer to the device specific chapters.
Pins assigned alternate functions may be used in a general purpose manner or in their
alternate function capacity.

INPUT/OUTPUT 7-3

PORT G
Port G has the following alternate pin functions on all COP800 devices:
GO INTR (External Interrupt Input)
Gl No alternate function
G2 No alternate function
G3 Timer1I/O
G4 SO0 (MICROWIRE/PLUS Serial Data Output)
G5 SK (MICROWIRE/PLUS Clock I/O)
G6 SI (MICROWIRE/PLUS Serial Data Input)

G7* Dedicated CKO (Clock Output) with Crystal Oscillator Mask Option or HALT/
Restart (Exit HALT Mode) with RC or External Oscillator Mask Option

Refer to the Interrupt, Timer, MICROWIRE/PLUS and Power Save Mode chapters for
additional information on these pins.

*This pin’s alternate function(s) cannot be enabled and disabled in software.

7-4 INPUT/OUTPUT

Chapter 8

INSTRUCTION SET

8.1 INTRODUCTION

This chapter defines the instruction set of the COP800 Basic Family members. It
contains information about the instruction set features, addressing modes and types. In
addition, it contains a detailed description of each COP800 instruction.

8.2 FEATURES
The strength of the COP800 instruction set is based on the following features:
e Majority of single-byte opcode instructions to minimize program size.

¢ One instruction cycle for the majority of single-byte instructions to minimize pro-
gram execution time.

¢ Many single-byte, multiple function instructions such as DRSZ.

¢ Three memory mapped pointers; two for register indirect addressing, and one for
the software stack.

e Sixteen memory mapped registers which allow an optimized implementation of
certain instructions.

e Ability to set, reset and test any individual bit in data memory address space, in-
cluding the memory mapped I/O ports and registers.

¢ Register-Indirect LOAD and EXCHANGE instructions with optional automatic
post-incrementing or decrementing of the register pointer. This allows for greater
efficiency (both in cycle time and program code) in loading, walking across and pro-
cessing fields in data memory.

¢ Unique instructions to optimize program size and throughput efficiency. Some of
these instructions are: DRSZ, IFBNE, DCOR, RETSK and RRC.

8.3 ADDRESSING MODES

The COP800 instruction set offers a variety of methods for specifying memory addresses.
Each method is called an “addressing mode.” These modes are classified into two
categories: “operand” addressing modes and “transfer-of-control” addressing modes.
Operand addressing modes are the various methods of specifying an address for
accessing (reading or writing) data. Transfer-of-control addressing modes are used in
conjunction with “Jump” instructions to control the execution sequence of the software
program.

INSTRUCTION SET 8-1

Operand Addressing Modes

8.3.1 Operand Addressing Modes

The operand of an instruction specifies what memory location is to be affected by that
instruction. Several different operand addressing modes are available, allowing memory
locations to be specified in a variety of ways. An instruction can specify an address
directly by supplying the specific address, or indirectly by specifying a register pointer.
The contents of the register (or in some cases, two registers) point to the desired memory
location. In the “immediate” mode, the data byte to be used is contained in the instruction
itself.

Each addressing mode has its own advantages and disadvantages with respect to
flexibility, execution speed, and program compactness. Not all modes are available with
all instructions. The Load (LD) instruction offers the largest number of addressing
modes.

The available addressing modes are:
¢ Direct
e Register B or X Indirect
BorXIn

e Register direct with Post-Incrementing/Decrementing

[=}

e Immediate
¢ Immediate Short
e Indirect from Program Memory

The addressing modes are described below. Each description includes an example of an
assembly language instruction using the described addressing mode.

Direct. The memory address is specified directly as a byte in the instruction. In
assembly language, the direct address is written as a numerical value (or a label that has
been defined elsewhere in the program as a numerical value).

Example: Load Accumulator Memory Direct

LD A,05
Reg/Data Memory Contents Before Contents After
Accumulator XX Hex A6 Hex

Memory Location
0005 Hex A6 Hex A6 Hex

8-2 INSTRUCTION SET

Operand Addressing Modes

Register B or X Indirect. The memory address is specified by the contents of the B
Register or X register (pointer register). In assembly language, the notation [B] or [X]
specifies which register serves as the pointer.

Example: Exchange Memory with Accumulator, B Indirect

X A,[B]
Reg/Data Memory Contents Before Contents After
Accumulator 01 Hex 87 Hex
Memory Location
0005 Hex 87 Hex 01 Hex
B Pointer 05 Hex 05 Hex

Register B or X Indirect with Post-Incrementing/Decrementing. The relevant
memory address is specified by the contents of the B Register or X register (pointer
register). The pointer register is automatically incremented or decremented after
execution, allowing easy manipulation of memory blocks with software loops. In
assembly language, the notation [B+], [B-], [X+], or [X-] specifies which register serves as
the pointer, and whether the pointer is to be incremented or decremented.

Example: Exchange Memory with Accumulator, B Indirect with Post-

Increment
X A,[B+]
Reg/Data Memory Contents Before Contents After
Accumulator 03 Hex 62 Hex
Memory Location
0005 Hex 62 Hex 03 Hex
B Pointer 05 Hex 06 Hex

Immediate. The data for the operation follows the instruction opcode in program
memory. In assembly language, the number sign character (#) indicates an immediate
operand.

Example: Load Accumulator Immediate

LD A#05
Reg/Data Memory Contents Before Contents After
Accumulator XX Hex 05 Hex

INSTRUCTION SET 8-3

Transfer-of-Control Addressing Modes

Immediate Short. This is a special case of an immediate instruction. In the “Load B
immediate” instruction, the 4-bit immediate value in the instruction is loaded into the
lower nibble of the B register. The upper nibble of the B register is reset to 0000 binary.

Example: Load B Register Immediate Short
LD B,#7
Reg/Data Memory Contents Before Contents After
B Pointer 12 Hex 07 Hex

Indirect from Program Memory. This is a special case of an indirect instruction that
allows access to data tables stored in Program Memory. In the “Load Accumulator
Indirect” (LAID) instruction, the upper and lower bytes of the Program Counter (PCU
and PCL) are used temporarily as a pointer to Program Memory. For purposes of
accessing Program Memory, the contents of the Accumulator and PCL are exchanged.
The data pointed to by the Program Counter is loaded into the Accumulator, and
simultaneously, the original contents of PCL are restored so that the program can
resume normal execution.

Example: Load Accumulator Indirect

LAID
Reg/Data Memory Contents Before Contents After
PCU 04 Hex 04 Hex
PCL 35 Hex 36 Hex
Accumulator 1F Hex 25 Hex

Memory Location
041F Hex 25 Hex 25 Hex

8.3.2 Transfer-of-Control Addressing Modes

Program instructions are usually executed in sequential order. However, “Jump”
instructions can be used to change the normal execution sequence. Several transfer-of-
control addressing modes are available to specify jump addresses.

A change in program flow requires a non-incremental change in the Program Counter
contents. The Program Counter consists of two bytes, designated the upper byte (PCU)
and lower byte (PCL). The most significant bit of PCU is not used, leaving 15 bits to
address the program memory.

Different addressing modes are used to specify the new address for the Program Counter.
The choice of addressing mode depends primarily on the distance of the jump. Farther
jumps sometimes require more instruction bytes in order to completely specify the new
Program Counter contents.

8-4 INSTRUCTION SET

Transfer-of-Control Addressing Modes

The available transfer-of-control addressing modes are:
¢ Jump Relative
* Jump Absolute
® Jump Absolute Long
* Jump Indirect

The transfer-of-control addressing modes are described below. Each description includes
an example of a “Jump” instruction using a particular addressing mode, and the effect on
the Program Counter of executing that instruction.

Jump Relative. In this 1-byte instruction, six bits of the instruction opcode specify the
distance of the jump from the current program memory location. The distance of the
jump can range from —-31 to +32.

Example: Jump Relative

JP 0A
Reg Contents Before Contents After
PCU 02 Hex 02 Hex
PCL 05 Hex OF Hex

Jump Absolute. In this 2-byte instruction, 12 bits of the instruction opcode specify the
new contents of the Program Counter. The upper three bits of the Program Counter
remain unchanged, restricting the new Program Counter address to the same 4-Kbyte
address space as the current instruction. (This restriction is relevant only in devices
using more than one 4-Kbyte program memory space.)

Example Jump Absolute

JMP 0125
Reg Contents Before Contents After
PCU 0C Hex 01 Hex
PCL 77 Hex 25 Hex

Jump Absolute Long. In this 3-byte instruction, 15 bits of the instruction opcode
specify the new contents of the Program Counter.

INSTRUCTION SET 8-5

INSTRUCTION TYPES

Example: Jump Absolute Long

JMP 03625

Reg/Memory Contents Before Contents After
PCU 42 Hex 36 Hex
PCL 36 Hex 25 Hex

Jump Indirect. In this 1-byte instruction, the lower byte of the jump address is
obtained from a table stored in program memory, with the Accumulator serving as the
low order byte of a pointer into program memory. For purposes of accessing program
memory, the contents of the Accumulator are written to PCL (temporarily). The data
pointed to by the Program Counter (PCH/PCL) is loaded into PCL, while PCH remains
unchanged.

Example: Jump Indirect

JID _
Reg/Memory Contents Before Contents After
PCU 01 Hex 01 Hex
PCL C4 Hex 32 Hex
Accumulator 26 Hex 26 Hex
Memory Location
0126 Hex 32 Hex 32 Hex

8.4 INSTRUCTION TYPES

The COPS800 instruction set contains a fairly wide variety of instructions. The available
instructions are listed below, organized into related groups.

Some instructions test a condition and skip the next instruction if the condition is not
true. Skipped instructions are executed as no-operation (NOP) instructions.

Arithmetic Instructions

The arithmetic instructions perform binary arithmetic such as addition and subtraction,
with or without the Carry bit.

Add (ADD)
Add with Carry (ADC)

8-6 INSTRUCTION SET

INSTRUCTION TYPES

Subtract (SUB)

Subtract with Carry (SUBC)
Increment (INC)

Decrement (DEC)

Decimal Correct (DCOR)
Clear Accumulator (CLR)
Set Carry (SC)

Reset Carry (RC)

Transfer-of Control Instructions

The transfer-of-control instructions change the usual sequential program flow by
altering the contents of the Program Counter. The Jump to Subroutine instructions save
the Program Counter contents on the stack before jumping; the Return instructions pop
the top of the stack back into the Program Counter.

Jump Relative (JP)

Jump Absolute (JMP)

Jump Absolute Long (JMPL)

Jump Indirect (JID)

Jump to Subroutine (JSR)

Jump to Subroutine Long (JSRL)

Return from Subroutine (RET)

Return from Subroutine and Skip (RETSK)
Return from Interrupt (RETI)

Software Trap Interrupt (INTR)

Load and Exchange Instructions

The load and exchange instructions write byte values in registers or memory. The
addressing mode determines the source of the data.

Load (LD)
Load Accumulator Indirect (LAID)
Exchange (X)

INSTRUCTION SET 8-7

INSTRUCTION TYPES

Logical Instructions

The logical instructions perform the basic logical operations AND, OR, and XOR
(Exclusive OR). Other logical operations can be performed by combining these basic
operations. For example, complementing is accomplished by exclusive-ORing the
Accumulator with FF Hex.

Logical AND (AND)
Logical OR (OR)
Exclusive OR (XOR)

Accumulator Bit Manipulation Instructions

The Accumulator bit manipulation instructions allow the user to shift the Accumulator
bits and to swap its two nibbles.

Rotate Right Through Carry (RRC)
Swap Nibbles of Accumulator (SWAP)

Memory Bit Manipulation Instructions

The memory bit manipulation instructions allow the user to set and reset individual bits
in memory.

Set Bit (SBIT)
Reset Bit (RBIT)

Conditional Instructions

The conditional instructions test a condition. If the condition is true, the next instruction
is executed in the normal manner; if the condition is false, the next instruction is skipped.

If Equal IFEQ)

If Greater Than (IFGT)

If Carry (IFC)

If Not Carry (IFNC)

If Bit (IFBIT)

If B Pointer Not Equal (IFBNE)

Decrement Register and Skip if Zero (DRSZ)

8-8 INSTRUCTION SET

INSTRUCTION DESCRIPTIONS

No-Operation Instruction

The no-operation instruction does nothing, except to occupy space in the program
memory and time in execution.

No-Operation (NOP)

8.5 INSTRUCTION DESCRIPTIONS

The COP800 Basic Family microcontrollers each contain 49 different instructions. Most
of the arithmetic, comparison, and data transfer (load, exchange) instructions operate
with three different addressing modes (register indirect with B pointer, memory direct,
and immediate). These various addressing modes increase the instruction total to 75.
The detailed instruction descriptions contain the following:

* Opcode mnemonic

* Instruction syntax with operand field descriptor
¢ Full instruction description

* Register level instruction description

® Number of instruction cycles

e Number of bytes in instruction

* Hexadecimal code for the instruction bytes

The following abbreviations represent the nomenclature used in the detailed instruction
description and the COP800 cross-assembler:

A Accumulator.

B B Pointer, located in RAM register memory location 00FE.

[B] Contents of RAM data memory location indicated by B pointer.

[B+] Same as [B], except that B pointer is post-incremented.

[B-] Same as [B], except that B pointer is post-decremented.

C Carry flag, located in bit 6 of the PSW register at memory location 00EF
Hex.

HC Half Carry flag, located in bit 7 of the PSW register at memory location
00EF Hex.

MA 8-bit memory address for RAM data store memory.

MD Memory Direct, which may be represented by an implicit label (B, X, SP), a

defined label (TEMP, COUNTER, etc.), or a direct memory address (12, OEF,
027, etc., where a leading 0 indicates hexadecimal).

INSTRUCTION SET 8-9

INSTRUCTION DESCRIPTIONS

8-10

PC

PCU
PCL
PSW
REG

REG#

SP

X]
[X+]

Program Counter (15 bits, with a program memory addressing range of
32768).

Program Counter Upper, which contains the upper 7 bits of PC.
Program Counter Lower, which contains the lower 8 bits of PC.
Processor Status Word Register, found at memory location 00EF.

Selected Register (1 of 16) from the RAM data store memory at addresses
00F0-00FF.

of memory register to be used (# = 0-F hexadecimal).

symbol is used to indicate an immediate value, with a leading zero (0) in-
dicating hexadecimal.

EXAMPLES:
#045 = immediate value of hexadecimal 45

#45 = immediate value of decimal 45

may also be used to indicate bit position, where # = 0-7
EXAMPLE:
RBIT #, [B]

Stack Pointer, located in RAM register memory location 00FD.

X pointer, located in RAM register memory location 00FC.
Contents of RAM data memory location indicated by the X pointer.
Same as [X], except that the X pointer is post-incremented.

Same as [X], except that the X pointer is post-decremented.

INSTRUCTION SET

ADC— Add with Carry

8.5.1 ADC— Add with Carry

Syntax: a) ADC A,[B]
b) ADC A#
¢) ADC AMD
Description: The contents of
a) the data memory location referenced by the B pointer
b) the immediate value found in the second byte of the instruction
¢) the data memory location referenced by the second byte of the in-
struction
are added to the contents of the accumulator, and the result is si-
multaneously incremented if the Carry flag is found previously set.
The result is placed back in the accumulator, and the Carry flag is
either set or reset, depending on the presence or absence of a carry
from the result. Similarly, the Half Carry flag is either set or reset,
depending on the presence or absence of a carry from the low-order
nibble.
Operation: A<-A+VALUE +C
C <- CARRY; HC <- HALF CARRY
- . L s e me s Instruction | _ - P
Instruction Addressing Mode Bytes | Hex Op Code
Cycle
ADC A,[B] Register Indirect (B Pointer) 1 1 80
ADC A# Immediate , 2 2 90/Imm #
ADC AOMD | Memory Direct 4 3 BD/MA/80

INSTRUCTION SET 8-11

ADD — Add

8.5.2 ADD — Add
Syntax: a) ADD A,[B]
b) ADD A,MD
¢) ADD A#
Description: The contents of the data memory location referenced by
a) the B pointer
b) the address in the second byte of the instruction
¢) the immediate value found in the second byte of the instruction
are added to the contents of the accumulator, and the result is
placed back in the accumulator. The Carry and Half Carry flags are
not changed.
Operation: A <- A + VALUE
Instruction Addressing Mode Insé;::;:et;on Bytes | Hex Op Code
ADD A,[B] Register Indirect (B Pointer) 1 84
ADD AJMD | Memory Direct 4 3 BD/MA/84
ADD A# Immediate 2 94/Imm . .#
8-12 INSTRUCTION SET

AND — And

8.5.3 AND — And

Syntax: a) AND A,([B]
b) AND A #
¢) AND A,MD
Description: An AND operation is performed on corresponding bits of the accu-

mulator and

a) the contents of the data memory location referenced by the B

pointer.

b) the immediate value found in the second byte of the instruction.

c) the contents of the data memory location referenced by the ad-
dress in the second byte of the instruction.

The result is placed back in the accumulator.

Operation: A <- A AND VALUE
Instruction Addressing Mode Ins(t};t;(l:‘teison Bytes | Hex Op Code
AND A,[B] Register Indirect (B Pointer) 1 1 85
AND A# Immediate 2 2 95/Imm.#
AND AMD | Memory Direct 4 3 BD/MA/85

INSTRUCTION SET 8-13

CLR — Clear Accumulator

8.5.4 CLR — Clear Accumulator

Syntax: CLR A

Description: The accumulator is cleared to all zeros.

Operation: A<0
Instruction Addressing Mode Insg;::lzigon Bytes | Hex Op Code
CLRA Implicit 1 1 64

8-14 INSTRUCTION SET

DCOR — Decimal Correct

8.5.5 DCOR — Decimal Correct
Syntax: DCOR A

Description: This instruction when used following an ADC (add with carry) or
SUBC (subtract with carry) instruction will decimal correct the re-
sult from the binary addition or subtraction. Note that the ADC in-
struction must be preceded with an ADD A, #066 (add hexadecimal
66) instruction for the decimal addition correction. This instruction
assumes that the two operands are in BCD (Binary Coded Decimal)
format and produces the result in the same BCD format. The Carry
and Half Carry flags remain unchanged.

Operation: A (BCD FORMAT) <- A (BINARY FORMAT)
. . Instruction
Instruction Addressing Mode Cycles Bytes | Hex Op Code

DCOR A Implicit 1 1 66

INSTRUCTION SET 8-15

DEC — Decrement Accumulator

8.5.6 DEC — Decrement Accumulator

Syntax: DECA

Description: This instruction decrements the contents of the accumulator and
places the result back in the accumulator. The Carry and Half Carry
flags remain unchanged.

Operation: A<-A-1
. . Instruction
Instruction Addressing Mode Cycles Bytes | Hex Op Code
DECA Implicit 1 1 8B

8-16 INSTRUCTION SET

DRSZ REG# — Decrement Register and Skip if Result is Zero

8.5.7 DRSZ REG# — Decrement Register and Skip if Result is Zero

Syntax:

Description:

Operation:

DRSZ REG#

This instruction decrements the contents of the selected memory
register (selected by #, where # = 0 to F) and places the result back
in the same register. If the result is zero, the next instruction is
skipped. This instruction is useful where it is desired to repeat an
instruction sequence a given number of times. The desired number
of times that the instruction sequence is to be executed is placed in
a register, and a DRSZ instruction with that register is coded at the
end of the sequence followed by a JP (Jump Relative) instruction
that branches back to the start of the instruction sequence. The JP
branch-back instruction is executed each time around the instruc-
tion sequence loop until the register count is decremented down to
zero, at which time the JP instruction is skipped as the program
branches (skips) out of the loop.

REG <-REG-1
IF(REG-1)=0,
THEN SKIP NEXT INSTRUCTION

Instruction

Instruction

Addressing Mode Cycles

Bytes | Hex Op Code

DRSZ REG#

Register Direct (Implicit) 3 1 C (REG# |

INSTRUCTION SET 8-17

IFBIT — Test Memory Bit

8.5.8 IFBIT — Test Memory Bit

Syntax:

Description:

Operation:

a) IFBIT #,[B]
b) IFBIT #,MD

The selected bit (# = 0 to 7, with 7 being high-order) from the data
memory location referenced by the

a) B pointer is tested.
b) address in the second byte of the instruction is tested.

If the selected bit is high (=1), then the next instruction is executed.
Otherwise, the next instruction is skipped.

IF BIT (#) SELECTED FROM MEMORY
IS EQUAL TO 0,
THEN SKIP NEXT INSTRUCTION

Instruction

Instruction

Address Mode Cycle

Bytes | Hex Op Code

IFBIT #,[B]

Register Indirect (B Pointer) 1 1 T#

IFBIT #,MD

Memory Direct 4 3 BD/MA/7#

8-18 INSTRUCTION SET

IFBNE # — If B Pointer Not Equal

8.5.9 IFBNE # — If B Pointer Not Equal

Syntax:

Description:

Operation:

IFBNE #

If the low-order nibble of the B pointer is not equal to # (where # =
0 to F), then the next instruction is executed. Otherwise, the next
instruction is skipped. This instruction is useful where the B point-
er is walked across a data field as part of a closed loop instruction
sequence. The IFBNE instruction is coded at the end of the se-
quence followed by a JP (Jump Relative) instruction that branches
back to the start of the instruction sequence. The # coded with the
IFBNE represents the next address beyond the data field. The B
pointer instruction with post-increment or decrement of the pointer
may be used in walking across the data field in either direction. The
instruction sequence branches back and repeats until the low-order
nibble of the B pointer is found equal to the # (representing the next
address beyond the data field), at which time the JP instruction is
skipped as the program branches (skips) out of the loop.

IF B POINTER LOW-ORDER NIBBLE EQUALS #,
THEN SKIP NEXT INSTRUCTION

Instruction

Instruction

Addressing Mode Cycles

Bytes | Hex Op Code

IFBNE #

Implicit 1 1 4#

INSTRUCTION SET 8-19

IFC — Test if Carry

8.5.10 IFC — Test if Carry

Syntax: IFC

Description: The next Instruction is executed if the Carry flag is found set. Oth-
erwise, the next instruction is skipped. The Carry flag is left un-
changed.

Operation: IF NO CARRY (C = 0),

THEN SKIP NEXT INSTRUCTION

. . Instruction
Instruction Addressing Mode Cycles Bytes | Hex Op Code
IFC Implicit 1 1 88

8-20 INSTRUCTION SET

IFEQ — Test if Equal

8.5.11 IFEQ — Test if Equal

Syntax: a) IFEQ A,[B]
b) IFEQ A,#
¢) IFEQ A,MD
Description a) The contents of the data memory location referenced by the B
pointer are compared for equality with the contents of the accu-
mulator.
b) The immediate value found in the second byte of the instruction
is compared for equality with the contents of the accumulator.
¢) The contents of the data memory location referenced by the ad-
dress in the second byte of the instruction are compared for
equality with the contents of the accumulator.
A successful equality comparison results in the execution of the
next instruction. Otherwise, the next instruction is skipped.
Operation: IF A # VALUE
THEN SKIP NEXT INSTRUCTION
Instruction Addressing Mode Instruction Bytes | Hex Op Code
Cycles
IFEQ A,[B] | Register Indirect (B Pointer) 1 82
IFEQ A # Immediate 2 92/Imm.#
IFEQ AMD | Memory Direct 4 BD/MA/82

INSTRUCTION SET 8-21

IFGT — Test if Greater Than

8.5.12 IFGT — Test if Greater Than
Syntax: a) IFGT A,[B]
b) IFGT A,#
c) IFGT A,MD
Description: The contents of the accumulator are tested for being greater than
a) the contents of the data memory location referenced by the B
pointer.
b) the immediate value found in the second byte of the instruction.
¢) the contents of the data memory location referenced by the ad-
dress in the second byte of the instruction.
A successful greater than test results in the execution of the next in-
struction. Otherwise, the next instruction is skipped.
Operation: IF A<VALUE
THEN SKIP NEXT INSTRUCTION
Instruction Addressing Mode Insé;:;;t ;on Bytes | Hex Op Code
IFGT A,[B] | Register Indirect (B Pointer) 1 1 83
IFGT A# Immediate 2 93/Imm #
IFGT A,MD | Memory Direct 4 BD/MA/83

8-22 INSTRUCTION SET

IFNC — Test if No Carry

8.5.13 IFNC — Test if No Carry

Syntax: IFNC
Description: The next instruction is executed if the Carry flag is found reset. Oth-
erwise, the next instruction is skipped. The Carry flag is left un-
changed.
Operation: IF CARRY (C=1),
THEN SKIP NEXT INSTRUCTION
Instruction Addressing Mode Instruction Bytes | Hex Op Code
Cycles
IFNC Implicit 1 1 89 |

INSTRUCTION SET 8-23

INC — Increment Accumulator

8.5.14 INC — Increment Accumulator

Syntax: INCA

Description: This instruction increments the contents of the accumulator and
places the result back in the accumulator. The Carry and Half Carry
flags remain unchanged.

Operation: A< A+1
. . Instruction
Instruction Addressing Mode Cycles Bytes | Hex Op Code
INCA Implicit 1 1 8A

8-24 INSTRUCTION SET

INTR — Interrupt (Software Trap)

8.5.15 INTR — Interrupt (Software Trap)

Syntax:

Description:

INTR

This zero opcode software trap instruction first stores its return ad-
dress in the data memory software stack and then branches to pro-
gram memory location 00FF. This memory location is the common
switching point for all COP800 interrupts, both hardware and soft-
ware. The program starting at memory location 00FF sorts out the
priority of the various interrupts and then vectors to the correct in-
terrupt service routine.

In order to save the return address, the contents of PCL (Lower 8
bits of PC) are transferred to the data memory location referenced
by SP (Stack Pointer). SP is then decremented, followed by the con-
tents of PCU (Upper 7 bits of PC) being transferred to the new data
memory location referenced by SP. Then SP is again decremented to
set up the software stack for the next interrupt or subroutine. The
return address has now been saved on the software stack in data
memory RAM.

The INTR instruction is not meant to be programmed explicitly, but
rather to be automatically invoked when certain error conditions oc-
cur. The reading of undefined (non-existent) ROM program memory
produces all zeros, which in turn invokes the INTR instruction. A
similar software trap can be set up if the subroutine Stack Pointer
(SP) is initialized to the data memory location at the top of user
RAM space. Then if the software stack is ever overpopped (more
subroutine or interrupt returns than calls), all ones will be returned
from the undefined (non-existent) RAM. This will cause the pro-
gram to return to the program address FFFF Hex, which in turn
will read all zeros and once again invoke the software trap INTR in-
struction.

Two precautions must be observed when dealing with the software
interrupt and its associated interrupt service routine. First, unlike
the hardware interrupts, the software interrupt does not reset the
GIE (Global Interrupt Enable) flag. Consequently, the COP800 mi-
crocontrollers can be interrupted by other interrupt sources while
servicing the software interrupt. Second, a RETSK (return and
skip) instruction should be used when returning from the software
interrupt service routine, rather than the normal return from inter-
rupt (RETI) instruction. The RETI instruction simply returns to the
INTR software instruction itself, resulting in an infinite program
loop.

INSTRUCTION SET 8-25

INTR — Interrupt (Software Trap)

Operation: [SP] <- PCL
[SP - 1] <- PCU
[SP - 2] : SET UP FOR NEXT STACK REFERENCE
PC <- OFF
. . Instruction
Instruction Addressing Mode n Cycles Bytes | Hex Op Code
INTR Implicit 7 1 00

8-26 INSTRUCTION SET

JID — Jump Indirect

8.5.16 JID — Jump Indirect

Syntax:

Description:

Operation:

JID

The JID instruction uses the contents of the accumulator to point to
an indirect vector table of program addresses. The contents of the
accumulator are transferred to PCL (Lower 8 bits of PC), after
which the data accessed from the program memory location ad-
dressed by PC is transferred to PCL. The program then jumps to the
program memory location accessed by PC. It should be observed
that PCU (Upper 7 bits of PC) is never changed during the JID in-
struction, so that the Jump Indirect must jump to a location in the
current program memory page of 256 addresses. However, if the JID
instruction is located at the last address of the page, the PC counter
will have already incremented over the page boundary, and both ac-
cesses to program memory (vector table and the new instruction)
will be fetched from the next page of 256 bytes.

PCL <- A
PCL <- ROM (PCU,A)

Instruction

Instruction

Addressing Mode Cycles

Bytes | Hex Op Code

JID

Indirect 3 1 A5 |

INSTRUCTION SET 8-27

JMP — Jump Absolute

8.5.17 JMP — Jump Absolute

Syntax:

Description:

Operation:

JMP ADDR

This instruction jumps to the programmed memory address. The
value found in the lower nibble (4 bits) of the first byte of the in-
struction is transferred to the lower nibble of PCU (Upper 7 bits of
PC), and then the value found in the second byte of the instruction
is transferred to PCL (Lower 8 bits of PC). The program then jumps
to the program memory location accessed by PC.

It should be noted that the upper 3 bits of PC (12-14) are not
changed, so the Jump Absolute instruction must jump to an address
located in the current 4-Kbyte program memory segment. However,
if a JMP instruction is programmed in the last address of the mem-
ory segment, the PC counter will have already incremented over the
memory segment boundary; therefore, the jump is to a memory lo-
cation in the following 4-Kbyte memory segment.

(C11-8 <- HIADDR (LOW NIBBLE OF FIRST BYTE OF INSTRUCTION)

X pi Vot Dy v LABPA 387

PC7-0 <- LOADDR (SECOND BYTE OF INSTRUCTION)

Instruction

Addressing | Instruction

Mode Cycles Bytes Hex Op Code

JMP ADDR | Absolute 3 2 2HIADDR/LOADDR

8-28 INSTRUCTION SET

JMPL — Jump Absolute Long

8.5.18 JMPL — Jump Absolute Long

Syntax: JMPL ADDR
Description: The JMPL instruction allows branching to anywhere in the 32-
Kbyte program memory space. The values found in the second and
third bytes of the instruction are transferred to PCU (Upper 7 bits
of PC) and PCL (Lower 8 bits of PC) respectively. The program then
jumps to the program memory location accessed by PC.
Operation: PC14-8 <- HIADDR (SECOND BYTE OF INSTRUCTION)
PC7-0 <- LOADDR (THIRD BYTE OF INSTRUCTION)
Instruction | Addressing Mode Inséructlon Bytes Hex Op Code
ycles
JMPL ADDR | Absolute 4 3 AC/HIADDR/LOADDR

INSTRUCTION SET 8-29

JP — Jump Relative

8.5.19 JP — Jump Relative
Syntax: JP DISP

Description: The relative displacement value found in the instruction opcode (all
8 bits) is added to the Program Counter (PC). The normal PC incre-
mentation is also performed. The displacement value allows a
branch back from 0 to 31 places (with the 0 representing an infinite
closed loop branch to itself) and a branch forward from 2 to 32 plac-
es. A branch forward of 1 is not allowed, since this zero opcode con-
flicts with the INTR software trap instruction.

Operation: PC <- PC + DISP + 1 (DISP 0)
Instruction | Addressing Mode Instruction Bytes Hex Op Code
Cycles
JP DISP Relative 3 1 0,1,E,F+DISP #

8-30 INSTRUCTION SET

JSR — Jump Subroutine

8.5.20 JSR — Jump Subroutine

Syntax:

Description:

Operation:

JSR ADDR

This instruction pushes the return address onto the software stack
in data memory and then jumps to the subroutine address. The con-
tents of PCL (Lower 8 bits of PC) are transferred to the data mem-
ory location referenced by SP (Stack Pointer). SP is then
decremented, followed by the contents of PCU (Upper 7 bits of PC)
being transferred to the new data memory location referenced by
SP. The return address has now been saved on the software stack in
data memory RAM. Then SP is again decremented to set up the
software stack reference for the next subroutine.

Next, the value found in the lower nibble (4 bits of the first byte of
the instruction) is transferred to the lower nibble of PCU, and the
value found in the second byte of the instruction is transferred to
PCL. The program then jumps to the memory location accessed by
PC. It should be noted that the upper 3 bits of PC (12-14) are not
changed, so the subroutine must be located in the current 4-Kbyte
program memory segment. If a JSR instruction is programmed in
the last address of the memory segment, however, the PC counter
will have already incremented over the memory segment boundary;
therefore, the subroutine must be located in the next memory seg-
ment.

[SP] <- PCL
[SP - 1] <- PCU

Mo _9l. QLT TTID T'ND NLT'VT QMANT, DLELTLDLTN AT
or = 4. Ol U FUNVINLAL O1lAVIN DL IviuiN UL

PC11-8 <- HTADDR (LOW NIBBLE OF FIRST BYTE OF INSTRUCTION)
PC7-0 <- LOADDR (SECOND BYTE OF INSTRUCTION)

Instruction

Addressing Mode

Instruction Bytes Hex Op Code

Cycles

JSR ADDR

Absolute

5

2

SHIADDR/LOADDR

INSTRUCTION SET 8-31

JSRL — Jump Subroutine Long

8.5.21 JSRL — Jump Subroutine Long

Syntax:

Description:

Operation:

JSRL ADDR

The JSRL instruction allows the subroutine to be located anywhere
in the 32-Kbyte program memory space. The instruction pushes the
return address onto the software stack in data memory and then
jumps to the subroutine address.

The contents of PCL (Lower 8 bits of PC) are transferred to the data
memory location referenced by SP (Stack Pointer). SP is then decre-
mented, followed by the contents of PCU (Upper 7 bits of PC) being
transferred to the new data memory location referenced by SP. The
return address is now saved on the software stack in data memory
RAM. Then SP is again decremented to set up the software stack
reference for the next subroutine.

and third bytes of the instruc-

Next, the values found in the second

d
tion are transferred to PCU and PCL respectively. The program
then jumps to the program memory location accessed by PC.

[SP] <- PCL

[SP-1] <-PCU

[SP - 2]: SET UP FOR NEXT STACK REFERENCE
PC14-8 <- HIADDR (SECOND BYTE OF INSTRUCTION)
PC7-0 <- LOADDR (THIRD BYTE OF INSTRUCTION)

Instruction

Addressing Mode

Instruction

Cycles Bytes Hex Op Code

JSRL ADDR

Absolute 5 3 AD/HIADDR/LOADDR

8-32 INSTRUCTION SET

LAID — Load Accumulator Indirect

8.5.22 LAID — Load Accumulator Indirect

Address Mode:

Description:

Operation:

INDIRECT

The LAID instruction uses the contents of the accumulator to point
to a fixed data table stored in program memory. The data table usu-
ally represents a translation matrix, such as the input from a key-
board or the output to a display.

The contents of the accumulator are exchanged with the contents of
PCL (Lower 8 bits of PC). The data accessed from the program
memory location addressed by PC is then transferred to the accu-
mulator. Simultaneously, the original contents of PCL are trans-
ferred back to PCL from the accumulator. It should be observed that
PCU (Upper 7 bits of PC) is not changed during the LAID instruc-
tion, so that the load accumulator indirect along with the associated
fixed data table must both be located in the current memory page of
256 bytes. However, if the LAID instruction is located at the last ad-
dress of the page, the PC counter will have already incremented
over the page boundary resulting in the operand being fetched from
the next page. Consequently, in this instance, the fixed data table
must reside in the next page of 256 bytes in the program memory.

A <-ROM (PCU, A)

Instruction

Instruction

Addressing Mode Cycles

Bytes | Hex Op Code

LAID

Indirect 3 1 A4 i

INSTRUCTION SET 8-33

LD — Load Accumulator

8.5.23 LD — Load Accumulator
Syntax: a) LD A,[B]
b) LD A,[B+]
c) LD A|[B-]
d) LD A#
e) LD AMD
f) LD AX]
g) LD A,[X+]
h) LD A,[X-]

Description: a) The contents of the data memory location referenced by the B
pointer are loaded into the accumulator.

b) The contents of the data memory location referenced by the B
pointer are loaded into the accumulator, and then the B pointer
is post-incremented.

¢) The contents of the data memory location referenced by the B
pointer are loaded into the accumulator, and then the B pointer
is post-decremented.

d) The immediate value found in the second byte of the instruction
is loaded into the accumulator.

e) The contents of the data memory location referenced by the ad-
dress in the second byte of the instruction are loaded into the ac-
cumulator.

f) The contents of the data memory location referenced by the X
pointer are loaded into the accumulator.

g) The contents of the data memory location referenced by the X
pointer are loaded into the accumulator, and then the X pointer
is post-incremented.

h) The contents of the data memory location referenced by the X
pointer are loaded into the accumulator, and then the X pointer
is post-decremented.

8-34 INSTRUCTION SET

LD — Load Accumulator

Operation: A <- VALUE
. . Instruction
Instruction Addressing Mode Cycles Bytes | Hex Op Code
LD A,[B] Register Indirect (B Pointer) 1 1 AE
LD A,[B+] Register Indirect With Post- 2 1 AA
Incrementing B Pointer
LD A,[B-] Register Indirect With Post- 2 1 AB
Decrementing B Pointer
LD A# Immediate 2 2 98/Imm.#
LD AMD Memory Direct 3 2 9D/MA
LD A[X] Register Indirect (X Pointer) 3 1 BE
LD A,[X+] Register Indirect With Post- 3 1 BA
Incrementing X Pointe
LD A,[X-] Register Indirect With Post- 3 1 BB
Decrementing X Pointer

INSTRUCTION SET 8-35

LD — Load B Pointer

8.5.24 LD — Load B Pointer
Syntax: LD B,# (# < 16)

Description: The one's complement of the value found in the lower nibble (4 bits)
of the instruction is transferred to the lower-nibble position of the B
pointer register, with the upper-nibble position being cleared to all

Zeros.
Operation: B3-0 <- (15 - #) (1's complement of #)
B7-4<-0
. . Instruction
Instruction Addressing Mode Cycles Bytes | Hex Op Code
LD B,# Short Immediate 1 1 5(15-#)

8-36 INSTRUCTION SET

LD — Load Memory

8.5.25 LD — Load Memory

Syntax: a) LD [B],#

b) LD [B+],#

¢) LD [B-],#

d) LD MD.#

Description: a) The immediate value found in the second byte of the instruction
is loaded into the data memory location referenced by the B
pointer.

b) The immediate value found in the second byte of the instruction
is loaded into the data memory location referenced by the B
pointer, and then the B pointer is post-incremented.

¢) The immediate value found in the second byte of the instruction
is loaded into the data memory location referenced by the B
pointer, and then the B pointer is post-decremented.

d) The immediate value found in the third byte of the instruction is
loaded into the data memory location referenced by the address
in the second byte of the instruction.

Operation: a) [Bl <-#

b) [Bl<-#B<-B+1

c¢) [Bl<-#B<-B-1

d) MD <- #

Instruction Addressing Mode Instruction Bytes | Hex Op Code

Cycles

LD [B],# Register Indirect/Immediate 2 2 9E/Imm.#

LD [B+],# Register Indirect With Post- 2 2 9A/Imm.#
Incrementing/Immediate

LD [B-,# Register Indirect With Post- 2 2 9B/Imm.#
Decrementing/Immediate

LD MD,# Memory Direct/Immediate 3 3 BC/MA/Imm #

INSTRUCTION SET 8-37

LD — Load Register

8.5.26 LD — Load Register
Syntax: LD REG#

Description: The immediate value found in the second byte of the instruction is
loaded into the data memory register referenced by the low-order
nibble of the first byte of the instruction.

Operation: REG <- #
Instruction Addressing Mode Instruction Bytes | Hex Op Code
Cycles
LD REG,# Implicit/Immediate 3 2 DREG#)/Imm.#

8-38 INSTRUCTION SET

NOP — No Operation

8.5.27 NOP — No Operation
Syntax: NOP

Description: No operation is performed by this instruction, so the net result is a
delay of one instruction cycle time.

Operation: NO OPERATION
. . Instruction
Instruction Addressing Mode Cycles Bytes | Hex Op Code
NOP Implicit 1 1 B8

INSTRUCTION SET 8-39

OR —Or

8.5.28 OR —Or

Syntax: a) OR A,([B]
b) OR A#
c) ORAMD

Description: An OR operation is performed on corresponding bits of the accumu-
lator with

a) the contents of the data memory location referenced by the B
pointer.

b) the immediate value found in the second byte of the instruction.

¢) the contents of the data memory location referenced by the ad-
dress in the second byte of the instruction.

The result is placed back in the accumulator.

Operation: A <- AOR VALUE
Instruction Addressing Mode Insé;t:;::;on Bytes | Hex Op Code
OR A,[B] Register Indirect (B Pointer) 1 1 87
OR A# Immediate 2 2 97/Imm #
OR A,MD Memory Direct 4 3 BD/MA/87

8-40 INSTRUCTION SET

RBIT — Reset Memory Bit

8.5.29 RBIT — Reset Memory Bit
Syntax: a) RBIT #,[B]
b) RBIT #,MD
Description: The selected bit (# = 0 to 7, with 7 being high-order) of the data
memory location referenced by the
a) B pointer is reset to 0.
b) address in the second byte of the instruction is reset to 0.
Operation: [Address:#] <- 0
Instruction Addressing Mode Insé:ructlon Bytes | Hex Op Code
ycles
RBIT #,[B] Register Indirect (B Pointer) 1 6(8 + #)
RBIT #,MD | Memory Direct 4 3 BD/MA/6(8+#)

INSTRUCTION SET 8-41

RC — Reset Carry

8.5.30 RC — Reset Carry

Syntax: RC
Description: Both the Carry and Half Carry flags are reset to 0.
Operation: C<-0
HC<-0
Instruction Addressing Mode Inséructlon Bytes | Hex Op Code
ycles
RC Implicit 1 1 A0

8-42 INSTRUCTION SET

RET — Return from Subroutine

8.5.31 RET — Return from Subroutine

Syntax:

Description:

Operation:

RET

The Stack Pointer (SP) is first incremented. The contents of the data
memory location referenced by SP are then transferred to PCU (Up-
per 7 bits of PC), after which SP is again incremented. Next, the
contents of the data memory location referenced by SP are trans-
ferred to PCL (Lower 8 bits of PC). The return address has now been
retrieved from the software stack in data memory RAM. The pro-
gram now jumps to the program memory location accessed by PC.

PCU <- [SP + 1]
PCL <- [SP + 2]
[SP + 2] : SET UP FOR NEXT STACK REFERENCE

Instruction

. Instruction
Addressing Mode Cycles Bytes | Hex Op Code

RET

Tmplicit 5 1 8E |

INSTRUCTION SET 8-43

RETI — Return from Interrupt

8.5.32 RETI — Return from Interrupt

Syntax:

Description:

Operation:

RETI

The Stack Pointer (SP) is first incremented. The contents of the data
memory location referenced by SP are then transferred to PCU (Up-
per 7 bits of PC), and SP is again incremented. Next, the contents of
the data memory location referenced by SP are transferred to PCL
(Lower 8 bits of PC). The return address has now been retrieved
from the software stack in data memory RAM. The program now
jumps to the program memory location accessed by PC. The Global
Interrupt Enable flag (GIE) is set to 1.

PCU <- [SP + 1]

PCL <- [SP + 2]

[SP + 2] : SET UP FOR
GIE <-1

VEXT STACK

Instruction

Instruction

Addressing Mode Cycles

Bytes | Hex Op Code

RETI

Implicit 5 1 8F

8-44 INSTRUCTION SET

RETSK — Return and Skip

8.5.33 RETSK — Return and Skip

Syntax:

Description:

Operation:

RETSK

The Stack Pointer (SP) is first incremented. The contents of the data
memory location referenced by SP are then transferred to PCU (Up-
per 7 bits of PC), and SP is again incremented. Next, the contents of
the data memory location referenced by SP are transferred to PCL
(Lower 8 bits of PC). The return address has now been retrieved
from the software stack in data memory RAM. The program now
jumps to and then skips the instruction in the program memory lo-
cation accessed by PC.

PCU <- [SP + 1]

PCL <- [SP + 2]

[SP + 2] : SET UP FOR NEXT STACK REFERENCE
SKIP NEXT INSTRUCTION

Instruction

Instruction

Addressing Mode Cycles

Bytes | Hex Op Code

RETSK

Implicit 5 1 8D

INSTRUCTION SET 8-45

RRC — Rotate Accumulator Right Through Carry

8.5.3¢ RRC — Rotate Accumulator Right Through Carry

Address Mode: RRC A
Description: The contents of the accumulator and Carry flag are rotated right
one bit position, with the Carry flag serving as a ninth bit position
linking the ends of the 8-bit accumulator. The previous carry is
transferred to the high-order bit position of the accumulator. The
low-order accumulator bit (A0O) is transferred to both the Carry flag
and the Half Carry flag.
Operation: C>A7T->A6->A5->A4->A3->A2->A1->A0->C
A0 -> HC
Instruction Addressing Mode Inséructlon Bytes | Hex Op Code
ycles
RRC A Implicit 1 1 BO

8-46 INSTRUCTION SET

SBIT — Set Memory Bit

8.5.35 SBIT — Set Memory Bit

Syntax: a) SBIT #,[B]
b) SBIT #MD
Description: The selected bit (# = 0 to 7, with 7 being high-order) of the data

memory location referenced by the
a) B pointer is set to 1.

b) address in the second byte of the instruction is set to 1.

Operation: [Address:#] <- 1
. . Instruction
Instruction Addressing Mode Cycles Bytes | Hex Op Code
SBIT #,[B] Register Indirect (B Pointer) 1 1 78 +#)
SBIT #,MD | Memory Direct 4 3 BD/MA/7(8+#)

INSTRUCTION SET 8-47

SC — Set Carry

8.5.36 SC — Set Carry

Syntax: SC
Description: Both the Carry and Half Carry flags are set to 1.
Operation: C<-1
HC«<-1
Instruction Addressing Mode Instruction Bytes | Hex Op Code
Cycles
SC Implicit 1 1 Al

8-48 INSTRUCTION SET

SUBC — Subtract with Carry

8.5.37 SUBC — Subtract with Carry

Syntax: a) SUBC A,[B]
b) SUBC A#
¢) SUBC A,MD
Description: a) The contents of the data memory location referenced by the B

pointer are subtracted from the contents of the accumulator, and
the result is simultaneously decremented if the Carry flag is
found previously reset.)

b) The immediate value found in the second byte of the instruction
is subtracted from the contents of the accumulator, and the result
is simultaneously decremented if the Carry flag is found previ-
ously reset.

¢) The contents of the data memory location referenced by the ad-
dress in the second byte of the instruction are subtracted from
the contents of the accumulator, and the result is simultaneously
decremented if the Carry flag is found previously reset.

The result is placed back in the accumulator, and the Carry flag is
either reset or set, depending on the presence or absence of a borrow
from the result. Similarly, the Half Carry flag is either reset or set,
depending on the presence or absence of a borrow from the low-
order nibble.

This instruction is implemented by adding the one's complement of
the subtrahend to the accumulator and then incrementing the re-
sult. Consequently, the borrow is the equivalent of the absence of
carry and vice versa. Similarly, the half carry is the equivalent of
the absence of half borrow and vice versa. A previous borrow (ab-
sence of previous carry) will inhibit the incrementation of the result.

Operation: A<-A-VALUE-C
C <- ABSENCE OF BYTE BORROW
HC <- ABSENCE OF LOW NIBBLE HALF BORROW

Instruction Addressing Mode Insé:;::lc‘::;on Bytes | Hex Op Code
SUBC A,[B] | Register Indirect (B Pointer) 1 1 81
SUBC A,# Immediate 2 2 91/Imm.#
SUBC A,MD | Memory Direct 4 3 BD/MA/81

INSTRUCTION SET 8-49

SWAP — Swap Nibbles of Accumulator

8.5.38 SWAP — Swap Nibbles of Accumulator

Syntax: SWAP A
Description: The upper and lower nibbles of the accumulator are exchanged.
Operation: A(7-4) <--> A(3-0)
. . Instruction
Instruction Addressing Mode Cycles Bytes | Hex Op Code
SWAP A Implicit 1 1 65

8-50 INSTRUCTION SET

X — Exchange Memory with Accumulator

8.5.39 X — Exchange Memory with Accumulator

Syntax:

Description:

Operation:

a) X A,[B]

b) X A,[B+]
c) XA [B-]
d) XAMD
e) XA, [X]

) XA, X+]
g) X A, [X]

a) The contents of the data memory location referenced by the B
pointer are exchanged with the contents of the accumulator.

b) The contents of the data memory location referenced by the B
pointer are exchanged with the contents of the accumulator, and
then the B pointer is post-incremented.

¢) The contents of the data memory location referenced by the B
pointer are exchanged with the contents of the accumulator, and
then the B pointer is post-decremented.

d) The contents of the data memory location referenced by the ad-
dress in the second byte of the instruction are exchanged with the
contents of the accumulator.

'S PO DR,
Lie accuinuiaior.

e) The contents of the data memory location referenced by the X
f

aa Y I Aan o
L

At tar PR N (YR N R R =
pointer are exchanged with the contents

f) The contents of the data memory location referenced by the X
pointer are exchanged with the contents of the accumulator, and
then the X pointer is post-incremented.

g) The contents of the data memory location referenced by the X
pointer are exchanged with the contents of the accumulator, and
then the X pointer is post-decremented.

a) A <-> [B]

b) A<>B;B<-B+1
¢c) A<>B;B<-B-1
d) A<->MD

e) A<->X;

INSTRUCTION SET 8-51

X — Exchange Memory with Accumulator

D A<>X; X<-X+1
g A<>X;X<-X-1

Instruction Addressing Mode Instruction Bytes | Hex Op Code
Cycles

X A,[B] Register Indirect (B Pointer) 1 1 A6

X A,[B+] Register Indirect With Post- 2 1 A2
Incrementing B Pointer

X A,[B-] Register Indirect With Post- 2 1 A3
Decrementing B Pointer

X AMD Memory Direct 3 2 9C/MA

X A IX] Register Indirect (X Pointer) 3 1 B6

X A,[X+] Register Indirect With Post- 1 B2
Incrementing X Pointer

X A X-] Register Indirect With Post- 3 1 B3
Decrementing X Pointer

8-52 INSTRUCTION SET

XOR — Exclusive Or

8.5.40 XOR — Exclusive Or

Syntax: a) XOR A,[B]
b) XOR A#
¢) XOR AMD
Description: An XOR (Exclusive OR) operation is performed on corresponding
bits of the accumulator with
a) the contents of the data memory location referenced by the B
pointer.
b) the immediate value found in the second byte of the instruction.
¢) the contents of the data memory location referenced by the ad-
dress in the second byte of the instruction.
The result is placed back in the accumulator.
Operation: A <- AXOR VALUE
Instruction Addressing Mode Insé;:;:;on Bytes | Hex Op Code
XOR A,[B] Register Indirect (B Pointer) 1 1 86
XOR A# Immediate 2 2 96/Imm.#
XOR AMD | Memory Direct 4 3 BD/MA/86

INSTRUCTION SET 8-53

INSTRUCTION SET SUMMARY TABLES

8.6 INSTRUCTION SET SUMMARY TABLES
8.6.1 Instruction Operations Summary
INSTR FUNCTION REGISTER OPERATION
ADD A, MemI Add A <- A + MemlI
ADC A, MemI Add with carry A <-A + Meml + C, C <- Carry
SUBC A, MemI Subtract with carry A <-A-Meml + C, C <- Carry
AND A, MemlI Logical AND A <- A and MemI
OR A, MemI Logical OR A <- A or MemI
XOR A, MemI Logical Exclusive-OR A <- A xor Meml
IFEQ A, Meml IF equal Compare A and MemlI, Do next if A = MemlI
IFGT A, Meml IF greater than Compare A and Meml, Do next if A > MemlI
IFBNE # IF B not equal Do next if lower 4 bits of B not = Imm
DRSZ Reg Decrement Reg, skip if zero Reg <- Reg - 1, skip if Reg goes to zero
SBIT #, Mem Set bit 1 to Mem.bit (bit = 0 to 7 immediate)
RBIT #, Mem Reset bit 0 to Mem.bit (bit = 0 to 7 immediate)
IFBIT #, Mem If bit If Mem.bit is true, do next instruction
X A, Mem Exchange A with memory A <-> Mem
LD A, Meml Load A with memory A <- Meml
LD Mem, Imm Load Direct memory Immed. Mem <- Imm
LD Reg, Imm Load Register memory immed. Reg <- Imm
X A, [B+i Exchange A with memory [B] A<>[Bl(B<-B+1)
X A, [X+] Exchange A with memory [X] A<>XIX<-X+1)
LD A, [B+] Load A with memory [B] A<-[B](B<-Bzl)
LD A, [X4] Load A with memory [X] A<- XX <-X+1)
LD [B+], Imm Load memory immediate [B] <-Imm (B <- B +1)
CLRA Clear A A<-0
INC A Increment A A<-A+1
DEC A Decrement A A<A-1
LAID Load A indirect from ROM A <-ROM(PU, A)
DCOR A Decimal correct A A <- BCD correction (follows ADC, SUBC)
RRC A Rotate right through carry C->A7->...->A0->C
SWAP A Swap nibbles of A A7..A4 <> A3.. A0
SC Set C C<-1
RC Reset C C<-0
IFC IfC If C is true, do next instruction
IFNC If Not C If C is not true, do next instruction
JMPL Addr. Jump absolute long PC <-ii (ii = 15 bits, 0 to 32K)
JMP Addr. Jump absolute PC11...PCO <- i (i = 12 bits)
PC15...PC12 remain unchanged
JP Disp. Jump relative short PC <- PC + r (ris -31 to +32, not 1)
JSRL Addr. Jump subroutine long [SP] <- PL, [SP - 1] <- PU, SP - 2, PC <- ii
JSR Addr. Jump subroutine [SP] <-PL, [SP-1] <- PU, SP - 2,
PC11..PCO <-ii
JID Jump indirect PL <- ROM(PU, A)
RET Return from subroutine SP + 2, PL <- [SP], PU <- [SP - 1]
RETSK Return and skip SP + 2, PL <- [SP], PU <- [SP - 1],
Skip next instr.
RETI Return from interrupt SP +2,PL<-[SP],PU<-[SP-1],GIE <- 1
INTR Generate an interrupt [SP] <- PL, [SP - 1] <- PU, SP - 2, PC <- OFF
NOP No operation PC<-PC+1
8-54 INSTRUCTION SET

Bytes and Cycles Per Instruction

8.6.2

Bytes and Cycles Per Instruction

Table 8-1 Instructions Using A and C

BYTES/

INSTR CYCLES
CLRA 1
INCA 11
DECA 11
LAID V3
DCOR 11
RRCA 11
SWAPA 11
sC 11
RC 11
IFC 11
IFNC 11

Table 8-2 Transfer of Control Instructions

BYTES/
INSTR CYCLES
JMPL 3/4
JMP 2/3
JP 13
JSRL 3/5
JSR o/5
JID 1/3
RET 1/5
RETSK 1/5
RETI 15
INTR 17
NOP 11

INSTRUCTION SET 8-55

Bytes and Cycles Per Instruction

Table 8-3 Memory Transfer Instructions

REGISTER REGISTER INDIRECT
INSTR INDIRECT | piRECT | IMMEDIATE | AUTO INCR & DECR
[B] I.X] [B+, B'] lX"', X']

XA? 1/1 1/3 1/2 1/3
LDA? 1/1 1/3 2/2 1/2 1/3
LD B, Imm /1P
LD B, Imm 2/3°¢
LD Mem, Imm | 2/2 2/2
LD Reg, Imm

a. Memory location addressed by B or X or directly

b.IFB< 16

c.IFB>15

INSTR | [B] | DIRECT | IMMEDIATE
ADD 1/1 3/4 2/2
ADC 11 3/4 2/2
SUBC |11 3/4 212
AND 1/1 3/4 2/2
OR 1/1 3/4 2/2
XOR 1/1 3/4 2/2
IFEQ 171 3/4 2/2
IFGT 1/1 3/4 2/2
IFBNE | 1/1
DRSZ |11 1/3
SBIT 1/1 3/4
RBIT 11 3/4
IFBIT |11 3/4

8-56 INSTRUCTION SET

Table 8-4 Arithmetic and Logic Instruction

Bytes and Cycles Per Instruction

9p02do pasnun UE ST ,— UO1}BI0] AIOWDW PISSIIPPR A[}081Ip B ST P — BJep J)BIPIUIUIT 3Y) ST | :2I0ym

HOZRAE Z~AMm-aR

JAdX-00d% | JAIX-001%

9I+df|ge+dr| dINr yse 40 ANGAI | 00#'d a1 | (9], LIGY | (d)'L LIES 1134 * * * 440 ZSUd | 1#440 AT |91-dr | 0-dP
JATX-00TX | JATX-00TX

SI+dL|TE+dr| dNr use g0 ANGJI | T0#'d a1 | (]9 LIy | [4]'9 LIS LIg I#(d a1 | [@'vVal | X'V a1 |d40 Zsya | 14340 a1 |L1-de| 1-dP
JAa*-00a¥ | J4AX-000x

yI+dr|og+dr| dNr use 0 ANGJI {go#'d AT |4 LIgy | [d)'S LIS | MSILIY | PWN'VAT | TYSP ¥Id |@d0 ZSY¥d |I#'ddo a1 {81-dr| g-dr
JA0%-000% | JADX-000%

gI+dr|6g+dr| dINC yse 00 ANGJI | co#'d a1 | (a)'y LIgy | [d]'y LIdS * PIN'V X TdNC | I#PI @'T | D40 ZSHA | 1#040 A1 |61-dP| €-dL
A4G*-00g% | AGX-009%

gI+dr|8g+dr| JINP asr g0 ANGJI | po#'d a1 |(d)‘e LIgY | [d)'e LI1gS | vOodd | 1#ldl a1 |[-g]'val|-Xl'v a1 |d40 Zsada |1#'d40 a1 |0z-dr| y-dr
JIVX-00VX | JAVX-00VX

11+df |Lg+drP| dINC use VO ANGJI | so#'d A1 | [d]g LIgy | [d)‘C LIS VONI | I#[+dl a1 |[[+4]'V a1|[+X]'V a'T| V40 ZSYd | 1#'V40 A1 |15-dr| §-dr
AA6X%-006X | Jd6X-006%

01+d(|92+dr| dINP use 6 ANGJAI |90#'d AT |[d]l'T LIy | ()T LIS ONAI * * * 640 ZSYA | I1#'640 A'1 |32-dl | 9-df
JA8X-008X | AA8X-008%

6+dl |Sg+dr dNpe use 8 ANGJI | L0#'d A1 |(d]0 LIFGY | (9]0 LIS 04l Va1 * dON |840 ZS¥d | I#'840 AT |€3-dr | L-dl
JALX-00LX | JALX-00LX

8+dpr |ve+dr| WL use L ANGAI |804'd AT * g2 01941 | VIO | I#'VY0 * * L0 ZSYd | I#240 A'1 |¥2-dr | 8-dr
AJ9X-009X | AA9X-009% ’

L+dr [€2+dr| dNr use 9 ANGJI |604#'dAT| VIOOd |ld])'9.LIgJl| [AI'VHOX | I#¥VYOX | [dI'VX | [XI'VX [940 ZSUd |1#'940 4’1 |$3-dr | 6-dP
AAGX-009% | JAGX-008X

9+dr |gg+dr| JdIWr use S ANGJL |Vo#'d a1| VAVMS |[9)'G LIgdl | [d]'V ANV | I#V ANV are * 640 ZS¥d | I#'¢d0 A'T |92-dr [01-dP
AAFX-00¥X | ddbX-00%X

G+dl [1Z+dr| NP yse ¥ ANGJI (do#'d 1| vaI0 |lgl'v L1gdl| ([dI'Vvaay | #vaav | divi * $d0 ZSUA | 1#740 AT |L3-dr |11-dP
AJEX-00€X | JAEX-00€X

p+dr |0g+dr| JIP gsr € ANGJI |Do#'d A1 * [g]e LI9dl | [9)'V LOJI | ¥V Lodl | [dI'VX | [XI'VX | €40 ZSYd | I#'€40 A'T |83-dr |21-dl
JAZX-002X | AAGX-008¥

€+dl |61+dl| JNr gsr g ANGAI |do#'d a1 * [g]'2 L1941 | [d]'V OFAI | I#'V OIAL | +aI'VX | #XI'VX | 240 ZSUd | 1#'240 AT |65-dr |€1-dL
AATX-001% | AATX-00TX

gHdr [81+dr| JINP gasr T ANGAL |J04'd AT * [d]'T L14dI | [d]'V 0dNS |[I#'V 0dNS oS * 140 ZS¥A | I#'140 A'T |0€-dP [$1-dL
J40%-000% | A40%-000%

ULNI [21+dr| JINP use 0 ANgAL |Jo#'d Tl * [d]'0 LIgdl | []'V DAV | I#'V DAV x| VOUY | 0J0 ZS¥d | 1#'040 A1 |1€-dL |S1-df

0 I 4 g i g 9 L 8 6 \'4 q 0 a ! Ja
A1ddIN ¥addn

sepood() ¢-8 d[qe],

8-57 INSTRUCTION SET

Bytes and Cycles Per Instruction

8-58 INSTRUCTION SET

Chapter 9
COP820C/COP840C/COPS8S80C

9.1 INTRODUCTION

The COP820C/840C/880C are members of the COPS microcontroller family. They are
fully static parts, fabricated using double-metal silicon gate microCMOS technology.
These low cost microcontrollers are each a complete microcomputer containing all system
timing, interrupt logic, ROM, RAM and I/O necessary to implement dedicated control
functions in a variety of applications. Features include an 8-bit memory-mapped
architecture, MICROWIRE/PLUS serial I/O, a 16-bit timer/counter with capture register
and a multi-sourced interrupt. Each I/O pin has software selectable options to adapt the
COP820C/840C/880C to specific applications. Several versions of the part are available
that operate over different voltage and temperature ranges. Refer to the datasheet for
more specific information. High throughput is achieved with an efficient instruction set
operating at a rate of 1 microsecond per instruction.

This chapter discusses the device specifics of the COP820C/840C/880C microcontrollers.
Information relevant to all COP800 Basic Family members is not covered in this chapter,
but may be found in the first eight chapters of this manual. In this chapter, the term
“COP880” refers to all COP880C packages, including the COP881C. “COP840” refers to
all COP840C packages, including the COP842C. “COP820” refers to all COP820C
packages, including the COP822C.

9.2 BLOCK DIAGRAM

The diagram in Figure 9-1 shows the basic functional blocks associated with the
COP820/840/880. These blocks include the Arithmetic Logic Unit (ALU), Timer,
MICROWIRE/PLUS, I/O ports, and on-chip memory.

COP820C/COP840C/COP880C 9-1

ROM —» RAM CKI RESET VCC GND
— 1Kx8" 64 x 8*
2K x 8** 128 x 8**
4K x 8** 128 x 8™ | | cLOCK
16-BIT
_|TIMER/COUNTER INTERRUPT
PROG WITH AUTOLOAD (TIMER &
COUNTER I ADDRESS ” HALT I & CAPTURE REG. EXTERNAL)
CPU X y
REGISTERS Ly
1A ALU
u SO ™MicROWIRE! [
T PLUS
—CNTAL SK j‘
- PSW
TRUCTION
INSECBEEF? I I/0]IOUTPUTS 110 INPUTS Vo
g1 o 9
PORTL PORTD PORTG PORT! PORTC
COP820
" COP840
COP880
COP800-12

Figure 9-1 COP820/840/880 Block Diagram

9-2 COP820C/COP840C/COP880C

9.3 DEVICE PINOUT/PACKAGES

The COP820 and COP840 are available in 20-pin DIP, 20-pin SO, 28-pin DIP, and 28-pin
SO packages. The COP880 is available in 28-pin DIP, 28-pin SO, 40-pin DIP and 44-pin
PLCC packages. Figure 9-2 shows the COP820/840/880 device package pinouts.

Refer to the COP820/840 and COP880 datasheets for more information on the device
packages.

o)
o)
c2—] 1 ~ s f—cr S35 3 =
c3— 2 39— co 563383868885
G4/S0 —| 3 38 |— Garmio HEEEEEEEER
G5/SK —] 4 37— a2 6 5 4 3 2 1 4443424140
cersi— s 36| oy cki— 7 39— GO/ANT
a5 Vcc—{ 8 38—RESET
G7/CKO—] 6 — GO/NT o — g 27— anp
CcKi — 7 34 |— RESET 1 —lo s6l—p7
Vee —| 8 4‘;;’3‘” 33 |— GND 12 — 11 44-BIN 3s5}—De
10— 9 (COP880 32— D7 13 —12 (COP880 ONLY) 34—D5
H—f10 ONLY) 31}—Ds 14 —13 33}—n4
12 —{11 30 |— D5 15 —14 32r—D3
s 2 29 [— D4 7 —|e 20—t
14 —13 28 |— D3 Lo —l17 20— Do
15 —14 27— D2 18 19 20212223 24 25 26 27 28 |
16 —{15 26 |— D1
17 —{16 25 |— Do 6O
Lo —117 oa |— L7 Z889z2zz23498%
L1—18 23 |— L6
L2—J19 215
L3 —{20 21 |— L4
U
G4/50 —] 1 28— G3/mio
asisk — 2 27}—a2
< Ge/si — 3 26— G
G7/cko —] 4 25— GO/NT
] 20| —
G4/S0 ! G3mo cki—| 5 24— RESET
G5/SK — 2 19— G2
Vec —| & 23}—GND
Ge/sl —| 3 18— a1 SBPIN
G7/CKO —) 4 17 }— GoANT 0—7 bipso 22 D3
cki— s 20:9’:; 16 |— RESET n—s 21— D2
DI
Vec— 6 (copszg/a‘zo 15 |— GND 2— 9 " 20— D1
only,
L— 7 ‘L 13— 10 19}— Do
L1 —| L L6
L 8 13 e Lo— 1 18— L7
—] 12
9 [L1 —| 12 17— L6
L3 — 10 11— L4
L2— 13 16 |— L5
L3 —] 14 15 |— L4
COP800-13

Figure 9-2 Device Package Pinouts

COP820C/COP840C/COP880C 9-3

94 PIN DESCRIPTIONS

The COP820/840/880 have four dedicated function pins: Ve, GND, CKI and RESET. All
other pins are available as general purpose inputs/outputs or as defined by their
alternate functions. Vg and GND function as the power supply pins. RESET is used as
the master reset input, and CKI is used as a dedicated clock input. Table 9-1 lists the pin
name, type, number and function of all COP820/840/880 signals.

9.5 INPUT/OUTPUT PORTS

The number of I/O ports available on the COP820/840/880 devices depends on package
type. The COP820/840 20-pin packages have only a Port L and Port G. The 28-pin
COP820/840/880 parts have a Port L, Port G, Port I and Port D. The 40- and 44-pin
COPS880 packages have a Port C in addition to the ports available on the 28-pin packages.
All common COP800 ports are described in Chapter 7 of this manual. However, a brief
description of each port is included in this section.

Port C, where available (40 pin DIP and 44 pin PLCC packages), is a 4-bit reconfigurable
I/O port. The port is configured by writing to the Port C configuration and data registers
as described in Section 2.5.3. Reading bits 4 - 7 of the Port C registers and input pins
returns undefined data. It is the user’s responsibility to mask out the upper four bits
when reading Port C. This is accomplished by simply ANDing the Port C data with the
value 000F Hex. This will ensure that the upper four bits of the Port C data are cleared.
The Port C pins have not been assigned alternate functions.

Port D, where available, is a 4-bit (28 pin DIP/SO) or 8-bit (40 pin DIP and 44 pin PLCC)
output only port. When writing an 8-bit quantity to devices which only have a 4-bit D
Port, only the lower four bits are used. The Port D pins have no alternate functions.

Port G is an 8-bit reconfigurable I/O port. Pins 0 - 5 of the port are configured by writing
to the Port G configuration and data registers as described in Section 2.5.3. Pin G6 is a
dedicated input pin. Pin G7 is either an input or output, depending on the oscillator mask
option selected. The Port G pins have the following alternate functions:

G0 INTR (External Interrupt Input)

Gl No alternate function

G2 No alternate function

G3 Timer1I1/O

G4 SO0 (MICROWIRE/PLUS Serial Data Output)
G5 SK (MICROWIRE/PLUS Clock I/O)

G6 SI(MICROWIRE/PLUS Serial Data Input)

G7 Dedicated CKO (Clock Output) with Crystal Oscillator Mask Option or HALT/
Restart (Exit HALT Mode) with RC or External Oscillator Mask Option

Port I, where available, is a 4-bit (28 pin DIP/SO) or 8-bit (40 pin DIP and 44 pin PLCC)
input-only port. All Port I pins are Hi-Z inputs. On the devices which only have a 4-bit

9-4 COP820C/COP840C/COP880C

Table 9-1 COP820/840/880 Pin Assignments

ALTERNATE | 20 PIN | 28 PIN | 40 PIN | 44 PIN
PORT | TYPE | "pyyNCTION | DIP/SO | DIP/SO| DIP | PLCC
Lo | 1O 7 11 17 17
L1 | Vo 8 12 18 18
L2 | Vo 9 13 19 19
L3 170 10 14 20 20
L4 | 1O 11 15 21 25
L5 | 1O 12 16 22 26
L6 | 1O 13 17 23 27
L7 | 1O 14 18 24 28
GO /0 INTERRUPT 17 25 35 39
G1 170 18 26 36 40
G2 1/0 19 27 37 41
G3 /0 TIO 20 28 38 42
G4 | 1O |so 1 1 3 3
G5 | 10 |SK 2 2 4 4
G6 I |sI 3 3 5 5
G7 |UCKO | HALT RESTART | 4 4 6 6
DO (0] 19 25 29
D1 0 20 26 30
D2 0 21 27 31
D3 0 22 28 32
10 I 7 9 9
I1 I 8 10 10
12 I 9 11 11
I3 I 10 12 12
14 I 13 13
15 I 14 14
I6 I 15 15
17 I 16 16
D4 (@) 29 33
D5 O 30 34
D6 O 31 35
D7 0 32 36
Co /0 39 43
C1 /0 40 44
c2 | 1o 1 1
c3s | 10 2 2
vee 6 6 8 8
GND 15 23 33 37
CKI 5 5 7 7
RESET 16 24 34 38

COP820C/COP840C/COP880C

9-5

Port I, reading bits 4 - 7 of Port I will return undefined data. The user should mask out
the upper four bits on these devices. No alternate functions have been assigned to the
Port I pins.

Port L is an 8-bit reconfigurable I/O port. The port is configured by writing to the Port LL
configuration and data registers as described in Section 2.5.3. The Port L pins have no
alternate functions.

9.6 PROGRAM MEMORY

The COP820C, COP840C and COP880C contain 1K bytes, 2K bytes and 4K bytes of
program memory, respectively. The program memory may contain either instructions or
data constants, and is addressed by the 15-bit program counter (PC). The program
memory can be indirectly read by the LAID (Load Accumulator Indirect) instruction for
table lookup of constant data. All program memory for the COP820/840/880 devices is
mask-programmed ROM.

9.7 DATA MEMORY

The COP820 has 64 bytes of RAM data memory. These 64 bytes are memory mapped into
two different locations. The first 48 bytes are resident from address 0000 to 002F Hex,

while the remaining 16 bytes (containing the register memory) are located from address
00FO to O0FF Hex.

The COP840 and COP880 have 128 bytes of RAM data memory. These 128 bytes are
memory mapped into two different locations. The first 112 bytes are resident from
address 0000 to 006F Hex, while the remaining 16 bytes are located from address 00F0
to OOFF Hex.

Refer to Chapter 2 for details on the data memory architecture.

9.8 REGISTER BIT MAPS

The COP820/840/880 devices have two registers that contain hardware control flags and
bits. These registers, CNTRL and PSW, are located in the COP800 core and are described
in the CORE REGISTERS section of this manual. The bit maps for these registers are
shown below.

The PSW register bits are:

GIE Global interrupt enable (enables interrupts)
ENI External interrupt enable

BUSY MICROWIRE/PLUS busy shifting flag
IPND External interrupt pending

ENTI Timer 1 interrupt enable

9-6 COP820C/COP840C/COP880C

TPND Timer 1 interrupt pending (timer underflow or capture edge)
C Carry Flip/Flop
HC Half-Carry Flip/Flop

Table 9-2 PSW Register Bits

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
HC C TPND ENTI IPND BUSY ENI GIE

The timer and MICROWIRE/PLUS control register bits are:
SL1 & SLO Selects the MICROWIRE/PLUS clock divide-by (00=2,01=4,1x=8)

IEDG External interrupt edge polarity (0 = rising edge, 1 = falling edge)
MSEL Selects G5 and G4 as MICROWIRE/PLUS signals SK and SO
TRUN Used to start and stop the timer/counter (1 = run, 0 = stop)

TC1 Timer 1 Mode Control Bit

TC2 Timer 1 Mode Control Bit

TC3 Timer 1 Mode Control Bit

Table 9-3 CNTRL Register Bits

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
TC1 TC2 TC3 TRUN | MSEL IEDG SL1 SLO

9.9 MEMORY MAP

The COP820/840/880 is based on a memory-mapped architecture. All data memory, I/O
ports, port registers and function registers are mapped into the data memory address
space. Table 9-4 shows the organization of the data memory address space and the
mapping of specific addresses. Read-only memory locations are noted in the table.

9.10 RESET
The following initializations are performed by the COP880/840/820 at reset:
PORT C: TRI-STATE

PORT D: LOGIC HIGH
PORT G: TRI-STATE
PORT L: TRI-STATE

COP820C/COP840C/COP880C 9-7

Table 9-4 COP820/840/880 Memory Map

ADDRESS CONTENTS
00 to 2F | On-chip RAM bytes
30 to 6F | On-chip RAM bytes (COP840/880 only) OR
Unused RAM address space (reads as all 1’s) (COP820 only)
70 to 7F | Unused RAM address space (reads as all 1’s)
80 to BF | Reserved
CO to CF | Reserved
DO to DF | On-chip I/O and registers
DO Port L data register
D1 Port L configuration register
D2 Port L input pins (read only)
D3 Reserved
D4 Port G data register
D5 Port G configuration register
D6 Port G input pins (read only)
D7 Port I input pins (read only)
D8 Port C data register (COP880 only)
D9 Port C configuration register (COP880 only)
DA Port C input pins (read only, (COP880 only)
DB Reserved
DC Port D
DD to DF | Reserved
EO to EF | On-chip functions and registers
EO to E8 | Reserved
E9 MICROWIRE/PLUS shift register (SIOR)
EA Timer lower byte
EB Timer upper byte
EC Timer autoload register lower byte
ED Timer autoload register upper byte
EE CNTRL control register
EF PSW register
FO to FF | 16 on-chip RAM bytes mapped as registers
FC X register
FD SP register
FE B register

9-8 COP820C/COP840C/COP880C

PC: CLEARED
PSW and CNTRL: CLEARED

B, X, SP: UNKNOWN at power-on reset
UNCHANGED at external reset
RAM: UNKNOWN at power-on reset

UNCHANGED at external reset
ACC and TIMER 1: UNKNOWN at power-on reset

UNKNOWN at external reset with Crystal oscillator clock op-
tion selected

UNCHANGED at external reset with R/C or External oscilla-
tor clock options

9.11 MASK OPTION(S)

The COP820/840 and COP880 mask-selectable options are listed below. The options are
programmed at the same time as the ROM pattern to provide the user with hardware
flexibility.

9.11.1 COP820/840

Option 1: COP820C/COP840C CKI Input
=1 Normal Mode Crystal (CKI/10); CKO for crystal configuration

=2 Normal Mode External (CKI/10); CKO available as G7 input
=3 R/C (CKI/10); CKO available as G7 in

WU \VAAL AV), Ui

Option 2: COP820C/COP840C Bonding
=1 28-pin DIP

=2 N/A

=3 20-pin DIP
=4 20-pin SO
=5 28-pin SO

9.11.2 COP880

Option 1: COP880C/COP881C CKI Input
=1 Normal Mode Crystal (CKI/10); CKO for crystal configuration
=2 Normal Mode External (CKI/10); CKO available as G7 input
=3 R/C (CKI/10); CKO available as G7 input

COP820C/COP840C/COP880C 9-9

Option 2: COP880C/COP881C Bonding
=1 44-pin PLCC
=2 40-pin DIP
=3 28-pin SO
=4 28-pin DIP

9.12 EMULATION DEVICES

The following chart shows the emulators available for the different COP820/840/880
packages. The emulators are discussed in detail in Appendix C.

Emulat
Part Number PI::ng(:: Emulators (Type)

COP822CMHD (MCM?)
COP822C-XXX/N 20 DIP | COP8782CN (OTPP)

COP8782CJ (UV ERASABLE)

COP842CMHD (MCM)
COP842C-XXX/N 20 DIP | COP8782CN (OTP)

COP8782CJ (UV ERASABLE)
COP822C-XXX/WM 20 SO COP8782CWM (OTP)
COP842C-XXX/WM COP8782CMC (UV ERASABLE)
COP820C-XXX/N COP881CMHD (MCM)
COP840C-XXX/N 28 DIP | COP8781N (OTP)
COP881C-XXX/N COP8781CJ (UV ERASABLE)
COP820C-XXX/WM 28 LCC | COP881CMEA® (MCM)
COP840C-XXX/WM 28 SO COP8781CWM (OTP)
COP881C-XXX/WM 28 SO COP8781CMC (UV ERASABLE)

COP880CMHD (MCM)
COP880C-XXX/N 40 DIP | COP8780CN (OTP)

COP8780CJ (UV ERASABLE)

44 LDCC | COP880CMHEL (MCM)
COP880C-XXX/V 44 PLCC | COP8780CV (OTP)
44 LDCC | COP8780CEL (UV ERASABLE)

a. Multi-chip Module (UV Erasable)
b. One-Time Programmable
c. Same footprint as 28-pin SO

9-10 COP820C/COP840C/COP880C

Chapter 10

COP8620C/COP8640C

10.1 INTRODUCTION

The COP8640C/8620C are members of the COPS microcontroller family. They are fully
static parts, fabricated using double-metal silicon gate microCMOS technology. These
low-cost microcontrollers are each a complete microcomputer containing all system
timing, interrupt logic, ROM, RAM, EEPROM, and I/O necessary to implement
dedicated control functions in a variety of applications. Features include an 8-bit
memory-mapped architecture, MICROWIRE/PLUS serial I/0, a 16-bit timer/counter
with capture register and a multi-sourced interrupt. Each I/O pin has software selectable
options to adapt the COP8640C/8620C to specific applications. The part operates over a
voltage range of 4.5V to 6.0V. Certain family members (COP86L20/COP86L40) operate
over a voltage range of 2.5V to 6.0V. Refer to the datasheet for more specific information.
High throughput is achieved with an efficient, regular instruction set operating at a rate
of 1 microsecond per instruction.

This chapter discusses the device specifics of the COP8640C/8620C microcontrollers.
Information relevant to all COP800 Basic Family members is not covered in this chapter,
but may be found in the first eight chapters of this manual. In this chapter, the term
“COP8640” refers to all COP8640C packages, including the COP8642C. “COP8620”
refers to all COP8620C packages, including the COP8622C.

10.2 BLOCK DIAGRAM

The diagram in Figure 10-1 shows the basic functional blocks associated with the
COP8620/8640. These blocks include the Arithmetic Logic Unit (ALU), Timer,
MICROWIRE/PLUS, I/O ports, and on-chip memory.

10.3 DEVICE PINOUT/PACKAGES

The COP8620 and COP8640 are available in 20-pin DIP, 20-pin SO, 28-pin DIP, and 28-
pin SO packages. Figure 10-2 shows the COP8620/8640 device package pinouts.

Refer to the COP8620/8640 datasheets for more information on the device packages.

10.4 PIN DESCRIPTIONS

The COP8620/8640 have four dedicated function pins: Vg, GND, CKI and RESET. All
other pins are available as general purpose inputs/outputs or as defined by their
alternate functions. Vo and GND function as the power supply pins. RESET is used as

COP8620C/COP8640C 10-1

CKI RESET Vcc GND

ROM RAM —>» EEPROM
— 1K x 8 64 x8 — ©64x8 ¢ T ¢
2Kx8 ¥ CLOCK
16-BIT
ADDRESS _IIMER/ICOUNTER] | |INTERRUPT
REGISTER WITH AUTOLOAD[] (TIMER &
PROG. & CAPTURE REG.] | EXTERNAL)
COUNTER HALT
. 3 i !
Y A 3 A A
CPU TIO
REGISTERS L»
A ALU SO
L e—| MICROWIRE/ S
& PLUS
B SK
e > 1
H—_PSW
INSTRUCTION
DECODER o |loutputs|| 1o INPUTS
8 4 8 | 4
PORTL PORTD PORTG PORT |
COP800-14
Figure 10-1 COP8620/8640 Block Diagram
U
G4/S0 — 1 28| —Garmo
Gs/sk — 2 27}—a2
< Ge/si —| 3 26 |—G1
G7/cko —] 4 25 |— Go/NT
G4/SO —] 1 20} — Gamo okt — s »a|— EESET
—12 19}1— G2
Gs/SK Veec —] & 23— GND
Ge/st —| 3 18} — a1
G7/CKO —] 4 17 |— GoANT 0—7 26-PIN 22— D3
oki— 5 sopn 16| — RESET n—s OPSO] b2
Vec— 6 PIPSO 451 GND 2— 9 20}— b1
Lw— 7 14— L7 13— 10 19}— po
L |
> 8 13 tz Lo— 11 1817
L3— 9 12—L4 L1 — 12 17— L6
| .
10 L2— 13 16 |— L5
3 —] 14 15 — L4
COP800-15
Figure 10-2 Device Package Pinouts
10-2 COP8620C/COP8640C

the master reset input, and CKI is used as a dedicated clock input. Table 10-1 lists the
pin name, type, number and function of all COP8620/8640 signals.

Table 10-1 COP8620/8640 Pin Assignments

ALTERNATE | 20 PIN | 28 PIN

PORT | TYPE | "pyNCTION | DIP/SO | DIP/SO
L0 /0 7 11
L1 V0 8 12
L2 V0 9 13
L3 V0 10 14
L4 /0 1 15
L5 V0 12 16
L6 /0 13 17
L7 /0 14 18
GO O | INTERRUPT |17 25
G1 /O 18 26
G2 /0 19 27
G3 Y0 | TIO 20 28
G4 7o |so 1 1
G5 /0 |SK 2 2
G6 I SI 3 3
G7 I/CKO | HALT RESTART | 4 4
DO (@) 19
D1 (@) 20
D2 (@) 21
D3 0 22
10 I 7
11 I 8
12 I 9
13 I 10
Voo 6 6
GND 15 23
CKI 5 5
RESET 16 24

10.5 INPUT/OUTPUT PORTS

The number of I/O ports available on the COP8620/8640 devices depends on package
type. The COP8620/8640 20-pin packages have only a Port L and Port G. The 28-pin
COP8620/8640 parts have a Port L, Port G, Port I and Port D. All common COP800 ports
are described in Chapter 7 of this manual. However, a brief description of each port is
included in this section.

COP8620C/COP8640C 10-3

Port D, where available (28 pin DIP/SO packages), is a 4-bit output only port. When
writing an 8-bit quantity to this port, only the lower four bits are used. The Port D pins
have no alternate functions.

Port G is an 8-bit reconfigurable I/O port. Pins 0 - 5 of the port are configured by writing
to the Port G configuration and data registers as described in Section 2.5.3. Pin G6 is a
dedicated input pin. Pin G7 is either an input or output depending on the oscillator mask
option selected. The Port G pins have the following alternate functions:

GO0 INTR (External Interrupt Input)

Gl No alternate function

G2 No alternate function

G3 Timer 11/0

G4 SO0 (MICROWIRE/PLUS Serial Data Output)
G5 SK (MICROWIRE/PLUS Clock I/O)

G6 SI MICROWIRE/PLUS Serial Data Input)

G7 Dedicated CKO (Clock Output) with Crystal Oscillator Mask Option or HALT/
Restart (Exit HALT Mode) with RC or External Oscillator Mask Option

Port I, where availabie (28 pin DIP/SO packages), is a 4-bit input-only port. Alil Port I pins
are Hi-Z inputs. Reading bits 4 - 7 of Port I will return undefined data. The user should
mask out the upper four bits on these devices. No alternate functions have been assigned
to the Port I pins.

Port L is an 8-bit reconfigurable I/O port. The port is configured by writing to the Port L
configuration and data registers as described in Section 2.5.3. The Port L pins have no
alternate functions.

10.6 PROGRAM MEMORY

The COP8620C and COP8640C contain 1K bytes and 2K bytes of program memory,
respectively. This portion of memory contains the program instructions. The program
memory can also contain look-up tables. The program memory is addressed by the 15-bit
program counter (PC). It can be indirectly read by the LAID instruction for table lookup.
All program memory for the COP8620/8640 devices is mask-programmed ROM.

10.7 DATA MEMORY

The data memory address space on the COP8620/8640 includes on-chip RAM, EEPROM,
I/0, and registers. Data memory is addressed directly by an instruction or indirectly
through B, X, and SP pointers.

The COP8620/8640 has 64 bytes of RAM. The first 48 bytes are mapped from locations
0000 Hex through 002F Hex. The remaining 16 bytes are mapped from locations 00F0
Hex through 00FF Hex. See Chapter 2 for details on the data memory architecture.

10-4 COP8620C/COP8640C

In addition to the 64 bytes of RAM, the COP8620/8640 provides 64 bytes of on-chip
EEPROM for nonvolatile data storage. This EEPROM memory is mapped from location
0080 Hex through 00BF Hex. This is very useful for applications that require data to be
maintained when there is no power. The data EEPROM can be read from and written to
in exactly the same way as the RAM. All instructions that perform read and write
operations on the RAM work similarly upon the data EEPROM. The data EEPROM
contains 0000 Hex (all 0’s) when shipped from the factory.

A data EEPROM write cycle is initiated by an instruction which accesses a location
within the EEPROM such as X, LD, SBIT, and RBIT. The EE memory support circuitry
sets the BsyERAM flag in the EECR register immediately upon beginning a data
EEPROM write cycle. It will automatically be reset by the hardware at the end of the
data EEPROM write cycle. The application program should test the BsyERAM flag
before attempting a write operation to the data EEPROM. The following example
illustrates how this can be accomplished:

TEST: IFBIT #BsyERAM, EECR
Jp TEST
LD 090, #OFF

In this example, the program continuously checks the state of the BsyERAM bit. Once
the bit is reset, the program continues and writes to the EEPROM memory. (In this case,
the value OOFF Hex is written into memory location 0090 Hex.)

A second EEPROM write operation while a write operation is still in progress will be
ignored and the Werr flag in the EECR register will be set to indicate the error status.

10.8 EECR AND EE SUPPORT CIRCUITRY

The EEPROM portion of the COP8620/8640 contains EE support circuitry. This circuitry
is needed to generate the high voltage programming pulses required to write the
EEPROM memory. The support circuitry enables the user’s program to read and write
from EEPROM memory as if it were ordinary RAM. An EEPROM cell in the erase state
is read out as a zero and the written state as a one. The EECR register provides control
and status functions for the EE portion of the data memory. The EECR register has the
following format:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
X X X 0 BsyERAM Flag 0 Werr

Bit 7 = X Don’t care. Cannot be used as general purpose flag bit.

Bit6 = X Don’t care. Cannot be used as general purpose flag bit.

Bit5 = X Don't care. Cannot be used as general purpose flag bit.

Bit4 = 0 Read-only bit. Always reads as “0”.

COP8620C/COP8640C 10-5

Bit3 = 1 Read-only bit. Set to “1” when EEPROM is being written to. It is
automatically reset upon completion of the write operation. This bit
is not cleared by a reset. If a reset occurs during a write operation,
the BsyERAM bit will not be cleared until the write cycle is com-
pleted.

= 0 Read-only bit. Reads as a “0” when nothing is being written to the
EEPROM.

Bit2 = X Read/Write bit. This bit can be used as a general purpose flag.
Bitl = 0 Read-only bit. Always reads as “0”.

Bit0 = 1 Reading a “l” from this bit indicates that an attempt was made to
write to the EEPROM while a previous write cycle was still in
progress. Werr is a read/write bit and is cleared by writing a “0” to it.

= 0 Reading a “0” from this bit indicates that no error was encountered
during a write cycle.

10.9 REGISTER BIT MAPS

The COP8620/8640 devices have two registers that contain hardware control flags and
bits. These registers, CNTRL and PSW, are located in the COP800 core and are described
in the CORE REGISTERS section of this manual. The bit maps for these registers are
shown below.

The PSW register bits are:

GIE Global interrupt enable (enables interrupts)

ENI External interrupt enable

BUSY MICROWIRE/PLUS busy shifting flag

IPND External interrupt pending

ENTI Timer 1 interrupt enable

TPND Timer 1 interrupt pending (timer underflow or capture edge)
C Carry Flip/Flop

HC Half-Carry Flip/Flop

Table 10-2 PSW Register Bits

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0
HC C TPND ENTI IPND BUSY ENI GIE

10-6 COP8620C/COP8640C

The timer and MICROWIRE/PLUS control register bits are:
SL1 & SLO Select the MICROWIRE/PLUS clock divide-by (00=2,01=4,1x=8)

IEDG External interrupt edge polarity (0 = rising edge, 1 = falling edge)
MSEL Selects G5 and G4 as MICROWIRE/PLUS signals SK and SO
TRUN Used to start and stop the timer/counter (1 = run, 0 = stop)
TC1 Timer 1 Mode Control Bit
TC2 Timer 1 Mode Control Bit
TC3 Timer 1 Mode Control Bit
Table 10-3 CNTRL Register Bits
Bit7 | Bit6 | Bits | Bit4 | Bit3 | Bitz | Bit1 | Bito |
TC1 TC2 TC3 TRUN | MSEL IEDG SL1 SLO i

10.10 MEMORY MAP

The COP8620/8640 is based on a memory mapped architecture. All data memory, I/O
ports, port registers and function registers are mapped into the data memory address
space. Table 10-4 shows the organization of the data memory address space and the
mapping of specific addresses. Read-only memory locations are noted in the table.

COP8620C/COP8640C

10-7

10-8

Table 10-4 COP8620/8640 Memory Map

ADDRESS CONTENTS

00 to 2F On-chip RAM bytes

30 to 7F Unused RAM address space (Reads as all 1’s)
80 to BF On-chip EEPROM (64 bytes)

CO to CF Reserved

DO to DF On-chip I/O and registers

Do Port L data register

D1 Port L configuration register

D2 Port L input pins (read only)

D3 Reserved

D4 Port G data register

D5 Port G configuration register

D6 Port G input pins (read only)

D7 Port I input pins (read only)

D8 to DB Reserved

DC Port D data register

DD to DF | Reserved

EO to EF On-chip functions and registers

EO to E8 Reserved

E9 MICROWIRE/PLUS shift register (SIOR)
EA Timer lower byte

EB Timer upper byte

EC Timer autoload register lower byte

ED Timer autoload register upper byte

EE CNTRL control register

EF PSW register

FO0 to FF 16 on-chip RAM bytes mapped as registers
FC X register

FD SP register

FE B register

COP8620C/COP8640C

10.11 RESET

The following initializations are performed by the COP880/840/820 at reset:

PORT D:

PORT G:

PORT L:

PC:

PSW and CNTRL:
B, X, SP:

RAM:

ACC and TIMER 1:

EECR:

LOGIC HIGH

TRI-STATE

TRI-STATE

CLEARED

CLEARED

UNKNOWN at power-on reset.
UNCHANGED at external reset.
UNKNOWN at power-on reset.
UNCHANGED at external reset.
UNKNOWN at power-on reset.

UNKNOWN at external reset with Crystal oscillator clock op-
tion selected.

UNCHANGED at external reset with R/C or External oscilla-
tor clock options.

CLEARED at power-on reset.

The BsyERAM bit is set only by a write operation. This bit is
cleared at the end of a write cycle regardless of the reset state.
In other words, the BsyERAM bit is not cleared by an external
reset which occurs in the middle of a write cycle. The
BsyERAM bit will be cleared only when a write cycle is com-
pleted. In the initialization routine, the user should perform a
dummy write to guarantee that this register is cleared after
reset.

10.12 MASK OPTION(S)

The COP8620/8640 mask-selectable options are listed below. The options are
programmed at the same time as the ROM pattern to provide the user with hardware

flexibility.

Option 1: COP8620C/COP8640C CKI Input
=1 Crystal (CK1/10); CKO for crystal configuration
=2 External (CKI/10); CKO available as G7 input
=3 R/C (CKV/10); CKO available as G7 input

COP8620C/COP8640C 10-9

Option 2: COP8620C/8640C Bonding
=1 28-pin package
=2 N/A
=3 20-pin package

10.13 EMULATION DEVICES

The following chart shows the emulators available for the different COP8620/8640
packages. The emulators are discussed in detail in Appendix C.

Emulator
Part Number Package Emulator (Type)

COP8620C-XXX/N

a
COP8640C-XXX/N 28 DIP | COP8640CMHD (MCM?)

COP8622C-XXX/N
COP8642C-XXX/N 20 DIP | COP8642CMHD (MCM)

COP8620C-XXX/WM b
COPS6106 000w | 28LCC | COP8640CMEAP (MCM)
COP8622C-XXX/WM
COP8642C-XXX/WM

a. Multi-chip Module (UV Erasable)
b. Same footprint as 28-pin SO

20 SO None

10-10 COP8620C/COP8640C

Chapter 11

COP820CJ

11.1 INTRODUCTION

The COP820CJ is a member of the COPS 8-bit microcontroller family. It is a fully static
microcontroller, fabricated using double-metal silicon gate microCMOS technology. This
low-cost microcontroller is a complete microcomputer containing all system timing,
interrupt logic, ROM, RAM, and I/O necessary to implement dedicated control functions
in a variety of applications. Features include an 8-bit memory-mapped architecture,
MICROWIRE serial I/O, a 16-bit timer/counter with capture register, and a multi-
sourced interrupt. Each I/O pin has software selectable options to adapt the COP820CdJ
to specific applications. Several versions of the part are available that operate over
different voltage and temperature ranges. Refer to the datasheet for more specfic
information. High throughput is achieved with an efficient instruction set operating at a
rate of 1 microsecond per instruction.

The COP820CJ has the following special features:
e Schmitt trigger inputs on Port L
* High current drive on pins L4 to L7
e Brown Out protection
e Watchdog Timer
e Modulator/Timer
e Comparator
e Multi-Input Wakeup on Port L
® 16-pin version in SO package

This chapter discusses the device specifics of the COP820CJ microcontroller. Information
relevant to all COP800 Basic Family members is not covered in this chapter but may be
found in the first eight chapters of this manual. In this chapter, the term “COP820CJ”
refers to all COP820CJ packages, including the COP822CJ and COP823CJ.

COP820CJ 11-1

11.2 BLOCK DIAGRAM

The diagram in Figure 11-1 shows the basic functional blocks associated with the
COP820CdJ. These blocks include the Arithmetic Logic Unit (ALU), Timer, MICROWIRE/
PLUS, I/O ports, comparator, watchdog, modulator timer, Multi-Input Wakeup, Brown-
Out circuit, and on-chip memory.

CLOCK
HALT
RESET

BROWN OUT 1/0
l I 16 BIT MICRO WATCHDOG 5 - = |

TIMER WIRE/ TIMER COMPARATOR

I INTERRUPT | T PLUS 8-BITS| 8-BITH 4-BITS{4-BITH

INSTR 64 MULTI
DECODE B MODIWLETORL | i, | |evtes | | inpuT
LOGIC X rRaM | | wakeur
SP]
PSW Me L
ILLEGAL | [] LPC]
COND CNTRL
DETECT AeaT

TL/DD/11208-1

Figure 11-1 COP820CJ Block Diagram

11.3 DEVICE PINOUT/PACKAGES

The COP820CJ is available in 16-pin SO, 20-pin DIP, 20-pin SO, 28-pin DIP, and 28-pin
SO packages. Figure 11-2 shows the COP820CJ device package pinouts.

Refer to the COP820CJ datasheet for more information on the device packages.

11-2 COP820CJ

G4/sO —{ 1 28l Gamio
G5/SK — 2 27— G2
Ge/si — 3 26— G1
G7/IckO — 4 25| GO/INT
ckl — S 24| _ RESET
Vee — 6 23] _ GND
o — 7 28-PIN 22} D3
i1 —| 8 DIP/SO 21| _ p2
22— 9 201 __ D1
13 — 10 191 _ Do
lo/cMpouT —f 11 18— L7/MODOUT
L1/CMPIN- —] 12 17— s
L2/CMPIN+ —] 13 16— Ls
L3 — 14 15 L4
TL/DD/11208-3
\y
|\
2‘;//23 — ; fg [22"'0 G6/SI —]1 16 }— G5/SK
G7/cko —| 3 18— a1 G7/CKO —2 15— G3/TIO
G6/SI —] 4 17— GO/INT CKI —3 14}— RESET
cki—] 5 20PIN4g] RESET Vee —|4 16-PIN 13}— GND
Voo —1 6 DIP/SO 1 GnD LO/CMPOUT —5 SO 12}— L7/MODOUT
LO/CMPOUT — 7 14}— L7mopout LV/CMPIN- —16 1}— Le
L1/CMPIN- —] 8 13— L6 L2/CMPIN+ —7 10— s
L2/CMPIN+ —] 9 12}— L5 L3 —8 ol— L4
L3 —10 11— L4
TL/DD/11208-5

TL/DD/11208-4

Figure 11-2 Device Package Pinouts

COP820CJ 11-3

11.4 PIN DESCRIPTIONS

The COP820CJ has four dedicated function pins: Vg, GND, CKI and RESET. All other
pins are available as general purpose inputs/outputs or as defined by their alternate
functions. Voo and GND function as the power supply pins. RESET is used as the master
reset input, and CKI is used as a dedicated clock input. Table 11-1 lists the pin name,

type, number and function of all COP820CJ signals.

Table 11-1 COP820CJ Pin Assignments

ALTERNATE | 16PIN | 20 PIN | 28 PIN
PORT | TYPE | "puNCTION SO | DIP/SO | DIP/SO
Lo | IO |MIWU/CMPOUT | 5 7 11
Ll | VO |MIWUCMPIN- | 6 8 12
L2 | UO |MIWU/CMPIN+ 7 9 13
L3 | vo |MIwuU 8 10 14
4 | VO |MIWU 9 11 15
L5 | VO |MIWU 10 12 16
L6 | Vo |MIwU 1 13 17
L7 | vo |mwumobour| 12 14 18
GO | VO |INTERRUPT 17 25
G1 170 18 26
Gz | 1o 19 27
e | vo |TI0 15 20 28
G4 | VO |SO 1 1
G | vo |sK 16 2 2
G6 1 |sI 1 3 3
G7 |UCKO | HALT RESTART | 2 4 4
DO 0 19
D1 0 20
D2 0 21
D3 0 22
10 1 7
I I 8
12 1 9
I3 I 10
Voo 4 6 6
GND 13 15 23
CKI 3 5 5
RESET 14 16 24
11-4 COP820CJ

11.5 INPUT/OUTPUT PORTS

The number of I/O ports available on the COP820CJ device depends on package type. The
COP820CJ 16- and 20-pin packages have only a Port L. and Port G. The 28-pin
COP820CJ parts have a Port L, Port G, Port I and Port D. All common COP800 ports are
described in Chapter 7 of this manual. However, a brief description of each port is
included in this section.

Port D, where available, is a 4-bit output-only port with moderately high sink current
capability. The Port D pins have no alternate functions.

Port G is an 8-bit reconfigurable I/O port. Pins 0 - 5 of the port are configured by writing
to the Port G configuration and data registers as described in Section 2.3.3. Pin G6 is a
dedicated TRI-STATE input pin. Pin G7 is either an input or output, depending on the
oscillator mask option selected. All Port G pins have Schmitt triggers on their inputs. The
MICROWIRE/PLUS serial interface is implemented through pins G4, G5, and G6. Pin
G4 is not available in the 16 pin package, limiting the 16-pin implementation to slave
mode or just as a serial-shift input register. The Port G pins have the following alternate
functions:

GO INTR (External Interrupt Input)

Gl No alternate function

G2 No alternate function

G3 Timer11/0

G4 SO0 (MICROWIRE/PLUS Serial Data Output)
G5 SK (MICROWIRE/PLUS Clock I/O)

G6 SI (MICROWIRE/PLUS Serial Data Input)

G7 Dedicated CKO (Clock Output) with Crystal Oscillator Mask Option or HALT/
Restart (Exit HALT Mode) with RC or External Oscillator Mask Option

vl velllal UsClllalol Aaasi up

Port I, where available, is a 4-bit input-only port. All Port I pins are Hi-Z inputs. No
alternate functions have been assigned to the Port I pins.

Port L is an 8-bit reconfigurable I/O port. The port is configured by writing to the Port L
configuration and data registers as described in Section 2.3.3. Pins L4 to L7 have high
sink current capability. Refer to the COP820CdJ datasheet for specific Port L electrical
characteristics. The Port L pins have the following alternate functions.

Lo MIWU or CMPOUT

L1 MIWU or CMPIN-

L2 MIWU or CMPIN+

L3 MIWU

L4 MIWU (high sink current capability)
L5 MIWU (high sink current capability)

COP820CJ 11-5

L6 MIWU (high sink current capability)
L7 MIWU or MODOUT (high sink current capability)

The selection of alternate Port L functions is performed using registers WKEN (address
00C9 Hex) to enable MIWU, and CNTRL2 (address 00CC Hex) to enable the comparator
and modulator. The programmer must always ensure that the Port L data and
configuration registers are set to the correct values when using the alternate functions. For
example, when using the comparator, the user must program the Port L pins used for the
non-inverting and inverting terminals as inputs. Pin L0 must be programmed as an output
if the output of the comparator is required on the pin. However, if there is an RC network
on the inverting terminal which needs to be discharged as is the case in A/D conversion (see
Chapter 13), pin L1 can be temporarily configured as an output set to logic 0 to discharge
the capacitor, without having to change the entire comparator set-up.

Port L pins have Schmitt Triggers on their inputs. This reduces the noise sensitivity of
the inputs, which is useful in applications working in electrically noisy environments
such as industrial timers, appliances connected to the power line, and automotive
applications.

11.6 PROGRAM MEMORY

The COP820CJ contains 1K bytes of program memory. All pro gram mory for the
COP820CJ devices is mask-programmed ROM Refer to Ch for detailed
information on the program memory.

11.7 DATA MEMORY

The COP820CJ has 64 bytes of RAM data memory. These 64 bytes are memory mapped
into two different locations. The first 48 bytes are resident from address 0000 to 002F
Hex, while the remaining 16 bytes (containing the register memory) are located from
address 00F0 to OOFF Hex. Refer to Chapter 2 for information on the data memory
architecture.

11.8 REGISTER BIT MAPS

The COP820CJ has five bit-mapped registers in addition to the PSW and CNTRL1
registers described in Section 2.4.3. The bit maps for these additional registers are shown
below. PSW and CNTRL]1 are also included for reference.

The WKEDG Register Bits are:
LOEDG Pin LO Wakeup Edge Select Bit
L1EDG Pin L1 Wakeup Edge Select Bit
L2EDG Pin L2 Wakeup Edge Select Bit
L3EDG Pin L3 Wakeup Edge Select Bit

11-6 COP820CJ

L4EDG Pin L4 Wakeup Edge Select Bit
L5EDG Pin L5 Wakeup Edge Select Bit
L6EDG Pin L6 Wakeup Edge Select Bit
L7EDG Pin L7 Wakeup Edge Select Bit
Table 11-2 WKEDG Register Bits (Address 00C8 Hex)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0
L7EDG | L6EDG | L5EDG | L4EDG | L3EDG | L2EDG | L1IEDG | LOEDG

The WKEN Register Bits are:

LOEN Pin L0 Wakeup Enable Bit
L1EN Pin L1 Wakeup Enable Bit
L2EN Pin L2 Wakeup Enable Bit
L3EN Pin L3 Wakeup Enable Bit
L4EN Pin L4 Wakeup Enable Bit
L5EN Pin L5 Wakeup Enable Bit
L6EN Pin L6 Wakeup Enable Bit
L7EN Pin L7 Wakeup Enable Bit

Table 11-3 WKEN Register Bits (Address 00C9 Hex)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0
L7EN L6EN L5EN L4EN L3EN L2EN L1EN LOEN

The WKPND Register Bits are:
LOPND Pin LO Wakeup Pending Bit
L1PND Pin L1 Wakeup Pending Bit
L2PND Pin L2 Wakeup Pending Bit
L3PND Pin L3 Wakeup Pending Bit
L4PND Pin L4 Wakeup Pending Bit
L5PND Pin L5 Wakeup Pending Bit
L6PND Pin L6 Wakeup Pending Bit
L7PND Pin L7 Wakeup Pending Bit

COP820CJ 11-7

Table 11-4 WKPND Register Bits (Address 00CA Hex)

Bit 7 Bit6 Bit 5 Bit4 Bit 3 Bit 2 Bit1 Bit 0
L7PND | L6PND | L5PND | L4PND | L3PND | L2PND | L1PND | LOPND
The WDREG Register Bit is:
WDREN Watchdog Reset enable bit
Table 11-5 WDREG Register Bits (Address 00CD Hex)
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0
UNUSED |UNUSED | UNUSED |[UNUSED |UNUSED | UNUSED |UNUSED | WDREN

The PSW Register Bits are:

GIE Global interrupt enable (enables interrupts)
ENI External interrupt enable
BUSY MICROWIRE/PLUS busy shifting flag
IPND External interrupt pending
ENTI Timer 1 interrupt enable
TPND Timer 1 interrupt pending (timer underflow or capture edge)
C Carry Flip/Flop
HC Half-Carry Flip/Flop
Table 11-6 PSW Register Bits (Address 00EF Hex)
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
HC C TPND ENTI IPND BUSY ENI GIE

The timer and MICROWIRE/PLUS control register bits are:
SL1 & SLO Select the MICROWIRE/PLUS clock divide-by (00=2,01=4,1x=8)

IEDG
MSEL
TRUN
TC1
TC2
TC3

11-8

External interrupt edge polarity (0 = rising edge, 1 = falling edge)
Selects G5 and G4 as MICROWIRE/PLUS signals SK and SO

Used to start and stop the timer/counter (1 = run, 0 = stop)

Timer 1 Mode Control Bit
Timer 1 Mode Control Bit
Timer 1 Mode Control Bit

COP820CJ

Table 11-7 CNTRL1 Register Bits (Address 00EE Hex)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
TC1 TC2 TC3 TRUN | MSEL IEDG SL1 SLO

The CNTRL2 Register Bits are:

MC3 Modulator/Timer Control Bit
MC2 Modulator/Timer Control Bit
MC1 Modulator/Timer Control Bit

CMPEN Comparator Enable Bit
CMPRD Comparator Read Bit
CMPOE Comparator Output Enable Bit
WDUDF Watchdog Timer Underflow Bit (Read Only)
Table 11-8 CNTRL2 Register Bits (Address 00CC Hex)

Bit7 |Bit6 | Bit5| Bit4 Bit 3 Bit 2 Bit 1 Bit 0
MC3 | MC2 | MC1 | CMPEN | CMPRD | CMPOE | WDUDF | UNUSED

11.9 MEMORY MAP

The COP820CJ is based on a memory mapped architecture. All data memory, I/O ports,
port registers and function registers are mapped into the data memory address space.
Table 11-9 shows the organization of the data memory address space and the mapping of
specific addresses. Read-only memory locations are also noted in the table.

11.10 RESET

The COP820CJ has three types of reset: External Reset, Watchdog Reset, and Brown Out
Reset. The following sections describe in detail the conditions required to generate these
resets and the effect of each type of reset on the COP820CJ.

11.10.1 Reset Initialization

Table 11-10 shows the initialization performed by the COP820CJ during the External,
Watchdog, and Brown Out resets. The effect of this initialization is to disable all
interrupts, Timer 1, the Modulator/Timer, the Multi-Input Wakeup, the MICROWIRE/
PLUS, and the Watchdog; to set all Port G and L pins to inputs; and to set Port D high.

COP820CJ 11-9

Table 11-9 COP820CJ Memory Map

ADDRESS CONTENTS

00 to 2F On-chip RAM bytes

30 to 7F Unused RAM address space (reads as all 1’s)
80 to BF Reserved (Reads Undefined Data)

C0 to C7 Reserved

C8 MIWU Edge Select Register (WKEDG)
C9 MIWU Enable Register (WKEN)

CA MIWU Pending Register (WKPND)

CB Reserved

CC Control2 Register(CNTRLZ2)

CD Watchdog Register(WDREG)

CE Watchdog Counter (WDCNT)

CF Modulator Reload (MODRL)

DO to DF On-chip I/O and registers

Do Port L data register

D1 Port L configuration register

D2 Port L input pins (read only)

D3 Reserved

D4 Port G data register

D5 Port G configuration register

D6 Port G input pins (read only)

D7 Port I input pins (read only); upper 4 bits undefined
D8 to DB Reseved for Port C

DC Port D Data Register

DD to DF Reserved for Port D

EO to EF On-chip functions and registers

EO - E8 Reserved

E9 MICROWIRE/PLUS shift register (SIOR)
EA Timer lower byte

EB Timer upper byte

EC Timerl autoload register lower byte

ED - Timerl autoload register upper byte

EE CNTRLI1 control register

EF PSW register

FO0 to FF 16 on-chip RAM bytes mapped as registers
FC X register

FD SP register

FE B register

11-10 COP820CJ

Table 11-10 Reset Initialization

Contents after
. Contents after Contents after
Register/Port External Reset Wz;:chdog Brown Out Reset
eset
Port D LOGIC HIGH LOGIC HIGH |LOGIC HIGH
Port G TRI-STATE TRI-STATE TRI-STATE
Port L TRI-STATE TRI-STATE TRI-STATE
PC CLEARED CLEARED CLEARED
RAM including JUNKNOWN at power-on |UNKNOWN UNKNOWN
SP, B and X UNAFFECTED with
power already applied
Timer 1 and UNKNOWN at power-on UNKNOWN UNKNOWN
Accumulator UNKNOWN with power
already applied (Crystal
Oscillator option selected)
UNAFFECTED with
power already applied (R/C
or External Oscillator
option selected)
PSwW CLEARED CLEARED CLEARED
CNTRL1 CLEARED CLEARED CLEARED
CNTRL2 CLEARED CLEARED CLEARED except Bitl
(Bit1 is unaffected)
WKEDG CLEARED CLEARED CLEARED
WKEN CLEARED CLEARED CLEARED
WKPND UNKNOWN UNKNOWN UNKNOWN
WDREG CLEARED CLEARED CLEARED except Bit0
(Bit0 is unaffected)
Watchdog FF Hex normally FF Hex FF Hex
Prescaler ALTERED at external
reset exit from HALT
Watchdog FF Hex normally FF Hex FF Hex
Counter ALTERED at external
reset exit from HALT
NOTES: 1. Whenever V(is greater than the Brown Out voltage, the external reset

has priority over the Brown Out reset. The external reset always has prior-

ity over the Watchdog reset.

2. During a Brown Out or External reset, the WDREN and WDUDF bits are
cleared. However, if a Watchdog underflow caused the reset, the values of
the WDREN and WDUDF bits are preserved, so that the initialization rou-
tine can detect whether a Watchdog underflow has occurred.

COP820CJ 11-11

11.10.2 Reset Timing Considerations

For applications using the crystal or resonator clock option, a reset condition occurring
during HALT mode automatically introduces a delay of 256 clock cycles immediately
after the rising edge of an external RESET or the recovery of V¢ above the Brown Out
voltage. This ensures that the crystal or resonator has had enough time to oscillate in a
stable manner. The program starts execution at address 0000 Hex within 2 additional
instruction cycles.

For all other external reset conditions, the program starts execution 2 cycles after the
rising edge of the reset pulse.

The Brown Out reset initialization is started once Vg has exceeded the Brown Out
voltage. If an external reset takes place during this initialization, the external reset has
priority over the Brown Out reset. The external reset always has priority over the
Watchdog reset.

11.10.3 Power-On Reset Circuit

The external power-on reset circuit must normally meet the requirements for the
COPS800 Basic family reset circuit as described in Section 2.6. However, if the Brown Out
protection option is used and the power supply rise time is greater than 50us, the
standard power-on reset circuit should be omitted, saving three components. In this case,
the RESET pin must be connected to Vgc. Power-on reset is then automatically
performed by the Brown Out protection circuit.

11.10.4 Watchdog Reset

With Watchdog enabled, the Watchdog logic internally resets the device if the user
program does not service the Watchdog timer within the selected service window. The
Watchdog reset does not disable the Watchdog. Upon Watchdog reset, the Watchdog
Prescaler/Counter are each initialized with 00FF Hex. The Watchdog reset does not have
priority over any other COP820CJ resets. Refer to the Watchdog section of this chapter
for more information on the Watchdog circuit.

11.10.5 Brown Out Reset

The on-board Brown Out protection circuit resets the device when the operating voltage
(Vo) goes below the Brown Out voltage. The device is held in reset when V¢ stays
below the Brown Out voltage. The device comes out of reset as V¢ rises from a voltage
lower than the Brown Out voltage and reaches the Brown Out voltage. If a two-pin
crystal/resonator clock option is selected, the Brown Out reset will trigger a 256 t. delay.
This delay allows the oscillator to stabilize before the device exits the reset state. The
delay is not used if the clock option is either R/C or external clock. The contents of data
registers and RAM are unknown following a Brown Out reset. The external reset takes
priority over Brown Out Reset and will deactivate the 256 t. cycles delay if in progress.
The Brown Out reset takes priority over the Watchdog reset.

11-12 COP820CJ

11.10.6 External Reset

A COP820CJ master reset is generated by holding the external RESET pin low. This type
of reset is common to all COP800 family devices, and is described in Section 2.6.

11.10.7 Reset Initialization Routine

The reset initialization routine cannot distinguish between an external reset and a
Brown Out reset. Therefore, if the Brown Out detection option is used, the reset
initialization routine must initialize the processor into a safe state, when used in safety-
critical applications such as appliances connected to the power line. A watchdog
underflow can be detected in the following way:

.=000

LD SP, #02F ; Initialize the stack pointer

IFBIT WDUDF, CNTRL2 ; Test whether reset is a Watchdog reset
JMP WDERR ; Execute the Watchdog error routine

; Normal initialization routine follows

11.11 BROWN OUT PROTECTION

The COP820CJ has an on-board Brown Out protection circuit for use in applications
where temporary drops in the supply voltage (Vo) could create potentially hazardous
situations. For example, household appliances connected to the AC power line are subject
to glitches or longer term drop-outs on the power supply, temporarily driving the
microcontroller below its minimum operating voltage. Under such conditions, the
program counter, stack and RAM contents are not guaranteed to be preserved. If this
occurs, the program behavior is unpredictable and a potentially dangerous event may
happen even when the power supply returns to its normal level.

The Brown Out protection circuit is permanently enabled or disabled via a mask option.
If enabled, the Brown Out protection circuit monitors Vo and compares it with the
Brown Out voltage. If V¢ falls below the Brown Out voltage, the COP820CJ is held in
reset. When V¢ rises above the Brown Out voltage, Brown Out initialization is
generated as described in Section 11.8, ensuring that the program is restored to a defined
state.

If Brown Out protection is disabled, the minimum operating voltage for the COP820CJ
is 2.5V. If Brown Out protection is enabled, the minimum operating voltage is the Brown
Out voltage, as long as the maximum operating frequency for the device at the Brown
Out voltage is not exceeded. Refer to the datasheet for the dependency of minimum
operating voltage on the maximum permissible operating frequency. The Brown Out
voltage tracks the minimum operating voltage, so that devices with lower Brown Out
voltages are guaranteed to operate at lower V¢ than devices with higher Brown Out
voltages. Therefore, if Brown Out protection is enabled, the device is guaranteed to
operate down to the Brown Out voltage even if this voltage is below 2.5V. For a
temperature range of 0°C to 70°C the Brown Out voltage is expected to be between 1.9V
and 3.9V. Over the full automotive temperature range, this extends from 1.8V to 4.2V.

COP820CJ 11-13

If the device is intended to operate at a voltage lower than the maximum Brown Out
voltage (VBO max), the Brown Out circuit should be disabled via the Brown Out mask
option.

The Brown Out Circuit is active in HALT mode. This increases the HALT mode current
by up to 100uA.

11.12 WATCHDOG

The COP820CJ has an on board 8-bit Watchdog timer. The timer contains an 8-bit READ/
WRITE down counter clocked by an 8-bit prescaler. The timer can be programmed to
operate in either of two modes: Watchdog timer or a general-purpose counter. Figure 11-
3 shows the Watchdog timer block diagram. The Watchdog counter is decremented every
256 t¢ cycles.

Mode 1: Watchdog Timer

The Watchdog timer is intended for use in applications where glitches or other sources of
external interference could corrupt the program counter or the stack contents. This can
result in the program behavior being unpredictable and potentially dangerous. For
example, the electrically noisy environment in which an automotive application is used
could cause the application software to be stuck in an infinite loop or to execute look-up
table data, thus causing unpredictable behavior. The programmer can already protect
against execution of unused code by ensuring that these areas are filled with the value
00 Hex (software trap opcode), and by properly handling the software trap condition in
the interrupt routine.

The Watchdog can be enabled or disabled only once after a Brown Out reset or External
reset. On power-up, the Watchdog is disabled. If the Watchdog timer is enabled, the user
program should write periodically into the 8-bit WDCNT counter, location 00CE Hezx,
before the counter underflows. The counter is loaded with N-1 to get N counts. The
counter underflow causes a Watchdog reset as described in Section 11.8. Loading the 8-
bit counter initializes the prescaler with FF Hex and starts the prescaler and the counter.
Both the prescaler and the counter are stopped when the counter underflows. They are
each loaded with FF Hex when the device goes into the HALT mode. The prescaler is used
for crystal or resonator start-up when the device exits the HALT mode through Multi-
Input Wakeup. In this case, the prescaler/counter contents are changed.

The programmer can adjust the required response time for a Watchdog failure by loading
different values in the counter. If a very low value is loaded in WDCNT, the response time
will be fast, but the counter must be updated more regularly. If a fast response time is
not required, then a larger counter value will be sufficient.

Mode 2: Timer

In this mode, the prescaler/counter is used as a timer by keeping the WDREN (Watchdog
reset enable) bit at zero. The counter underflow sets the WDUDF bit, but the underflow
does not reset the device. Loading the 8-bit counter (load N-1 for N counts) sets the
Watchdog Timer Enable (WDTEN) signal to “1”, loads the prescaler with FF, and starts
the timer. The counter underflow stops the timer.

11-14 COP820CJ

INTERNAL DATA BUS

__ HALT Restart
HALT ﬂ
Brown Out / *
Reset - _)
WAKE-UP > S%gp Prese R reset i
s Q PRESCALER] WD - Counter
+ 256 8BIT
— R WDTEN —*{Clock
C
LOAD
WD-Counter g
Underflow
Y
R S
All Q
RESETs
(W CNTRL2
WDUDF
WD Reset f WORET
External Reset __\ L
|/ R S
Brown Out Reset ‘
WDREG

COP800-16

Figure 11-3 Watchdog Timer Block Diagram

The WDTEN signal serves as a start signal for the Watchdog timer. This signal is set to
“1” when the 8-bit counter is loaded by the user program, either because of a Watchdog
service or because of a write to the counter. The signal is set to “0” by a reset and is
transparent to the user program.

Control and Status Bits

WDUDF: Watchdog Timer Underflow Bit

This bit resides in the CNTRL2 Register. The bit is set when the Watchdog timer
underflows. The underflow resets the device if the Watchdog reset enable bit is set
(WDREN=1). Otherwise, WDUDF can be used as the timer underflow flag. The bit is

COP820CJ 11-15

cleared upon Brown-Out reset, an External reset, a load to the 8-bit counter, or going into
the HALT mode. It is a read-only bit.

WDREN: Watchdog Reset Enable Bit

This bit resides in Bit 0 of the WDREG register. This bit enables the Watchdog timer to
generate a reset on a Watchdog timer underflow. The bit is cleared upon Brown Out reset
or External reset. The bit is under software control but can be written to only once
following a reset. After that, the hardware does not allow the bit to be changed during
program execution. If WDREN= 1, Watchdog reset is enabled, otherwise it is disabled.

WDCNT: Watchdog Counter

This 8-bit read/write register contains the contents of the Watchdog timer. The contents
can be read by the program at any time. The contents can be written at any time to
update the Watchdog timer.

Initialization Example

The following code shows how to initialize the Watchdog:

.=000
; Reset initialization
LD WDCNT, #020 ; Load and start the timer
SBIT WDREN, WDREG ; Enable the Watchdog reset
; Application code
LD WDCNT, #020 ; Regularly update the Watchdog

Table 11-11 shows the effect of Brown Out Reset, Watchdog Reset, and External Reset on
the Control/Status bits.

Table 11-11 Effect of HALT, Reset and loading WDCNT on Watchdog Registers.

External or
Parameter HALT Watchdog Brown Out Load
Reset Counter
Reset

8-bit Prescaler FF Hex FF Hex FF Hex FF Hex
8-bit WD Counter FF Hex FF Hex FF Hex User Value
WDREN bit Unchanged | Unchanged 0 Unchanged
WDUDF bit 0 Unchanged 0 0
WDTEN Signal Unchanged 0 0 1

11-16 COP820CJ

11.13 MODULATOR/TIMER

The Modulator/Timer contains an 8-bit counter which is not memory mapped, and an 8-
bit autoreload register, MODRL (address 00CF Hex). The Modulator/Timer has three
modes of operation selected by the Modulator/Timer Control bits. These bits, MC1, MC2
and MC3 reside in the CNTRL2 Register.

Mode 1: MODULATOR

The Modulator mode is used to generate bursts of between 1 and 256 pulses at a
frequency of either CKI or CKI/10. Figure 11-4 illustrates the timer configuration and
the waveform generated by this mode. This type of waveform is used in remote control
applications, such as electronic keys in the automotive area or remote control units for
consumer appliances. Refer to the COP820CJ datasheet for the specification on the
maximum permissible CKI frequency for the Modulator output.

The Modulator mode is selected by setting MC3 = 1. MC2 selects the modulator input
clock. IfMC2 = 1, the modulator input clock is set to CKI. IfMC2 = 0, the modulator input
clock is set to tg. MC1 is used as the start bit for the modulator. The high frequency
pulses are generated on the modulator output pin L7, which should be configured as an
output, by setting bit 7 of register PORTLC. The number of pulses is determined by the
8-bit autoreload register MODRL, which is loaded with N-1 to get N pulses. Loading
MODRL with FF Hex gives the maximum number of counts, 256. The user loads MODRL
with the desired number of counts and sets MC1 to start the counter. MODRL is then
loaded into the counter, and pulses at the modulator input frequency are routed to pin
L7 until the counter underflows. On underflow the hardware resets MC1 and stops the
counter. The L7 pin goes low and stays low until the counter is restarted by the user
program. Unless the number of counts is changed, the user program does not have to load
MODRL each time the counter is started. The counter can be started simply by setting
the MC1 bit. Setting MC1 by software will load the counter with the value of the
autoreload register. The software can reset MC1 to stop the counter.

Example: Produce 10 pulses at a frequency of 2 MHz on L7
Use a 2 MHz crystal oscillator.

RBIT 7,PORTLD ; Pin L7 output logic 0

SBIT 7,PORTLC ;

SBIT MC3,CNTRL2 ; Choose modulator mode
SBIT MC2,CNTRL2 ; Choose CKI clocking

LD MODRL, #9 ; Load with 9 to get 10 pulses
SBIT MC1l,CNTRL2 ; Start the modulator

Mode 2: PWM TIMER, 50% duty cycle

The 50% duty cycle mode is used to generate a square wave without processor
intervention. Applications include household appliances such as irons and coffee-makers
that require a simple buzzer function. Timer 1 is then available for A/D conversions.
Figure 11-5 illustrates the timer configuration and the waveform generated by this
mode.

COP820CJ 11-17

INTERNAL DATA BUS

r 3
7 6 5 . 0
AUTO RELOAD MC3 MC2 MC1 CNTRL2
8-BIT =1 RQS Register
Software
4
CLK DOWN-COUNTER Underflow
START/STOP 8-BIT

L7 Pin

CKI —»)

MUX }—¢
tC —>

256 Pulses (max.)

CKlortg

(50% duty cycle)

Triggered by Software

Triggered by Software

COP800-17
Figure 11-4 Modulator Block Diagram/Output Waveform

11-18 COP820CJ

INTERNAL DATA BUS

AUTO RELOAD
8-BIT

A4

tc — CLK

DOWN-COUNTER

7 6 5 & 0

MC3}] MC2 | MC1 CNTRL2

=0 |=0 |=1 Register
L7 Pin

L7 DATA

Underflow

F START/STOP 8-BIT

\4

LATCH

—iIX

256 tc (max.

Figure 11-5 Mode 2: 50% Duty Cycle Output

COP800-1¢

If both MC2 and MC3 are 0, a 50% duty cycle signal is generated on pin L7. This pin must
be configured as an output pin. In this mode the 8-bit counter is clocked by tc. The user
loads MODRL with the desired number of counts. Loading MODRL with N-1 will give an
output “on” time of N x t¢ or a frequency of 1/(2N x t). Setting the MC1 control bit by
software loads the counter with the value of the autoreload register and starts the
counter. The counter underflow toggles the L7 output pin, thereby generating a
waveform with a 50% duty cycle. The software can reset MC1 to stop the counter.

Example: Production of a 2kHz tone on L7

Using a 2 MHz crystal, t¢ is 5us. The period of a 2 kHz tone is 500us. The “on” time is
half of this, which is 250us. The value 250/5 = 50 should be loaded in MODRL.

RBIT 7,PORTLD
SBIT 7,PORTLC
RBIT MC2,CNTRL2
RBIT MC3,CNTRL2

LD MODRL, #49

SBIT MC1l,CNTRL2

; Pin L7 output logic 0

; Choose 50% duty cycle mode

; Load with 49 to get 50 tC = 250 us period

; Start the tone

COP820CJ 11-19

Mode 3: PWM TIMER, variable duty cycle

The variable duty cycle mode is used to generate two distinct types of waveforms without
processor intervention. Figure 11-6 illustrates the timer configuration and the waveform
generated by this mode.The waveform “on” time is determined by MODRL and the period
is determined by the Timer 1 underflow. If the Timer 1 underflow occurs every 256 t¢
cycles, an 8-bit PWM signal is generated, suitable for conversion into an analog signal.
This type of signal is useful in DC motor control. If the underflow occurs every 512, 1024,
2048 etc. tc cycles, 8-bit resolution over a voltage range of 0-0.5Vg, 0-0.25V ¢, 0-
0.125V(, etc. is possible. Delayed pulse generation is also possible with this mode. In
this case, the Timer 1 register is loaded with the delay time and MODRL with the pulse
width. This technique is useful for the phase control of AC-driven loads in electric drills,
food mixers, washing machines and vacuum cleaners.

When MC3 = 0 and MC2 = 1, a variable duty cycle PWM signal is generated on the L7
pin, which should be configured as an output. The counter is clocked by tc. In this mode
the 16-bit Timer 1, along with the 8-bit down counter, are used to generate a variable

INTERNAL DATA BUS
7 6 5 . 0
AUTO RELOAD MC3 |MC2 | MC1 CNTRL2
8-BIT =0 |=1 |RQS Register
y
tc —p CLK DOWN-COUNTER Underflow » Timer T1
START/STOP 8-BIT Underflow
L7 Pin
' X
Timer T1 8-Bit Counter
Underflow L Underflow
v
256 t (max.)
le N
[~ "

Controlled by T1
COP800-19

Figure 11-6 Mode 3: Variable Duty Cycle Output

11-20 COP820CJ

duty cycle PWM signal. The programmer resets the Timer 1 start bit (bit 4 of CNTRL)
during initialization. Then, the Timer 1 register is loaded with the required delay value
in to cycles, the Timer 1 reload register is loaded with the desired repetition rate, and
MODRL is loaded with the desired pulse width. In each case, loading the register with
N-1 will give a time of N. Timer 1 must be configured in “PWM Mode/Toggle TIO Out”
(CNTRL Bits 7,6,5 = 101). Setting bit 4 of CNTRL starts the sequence.

Each timer Timer 1 underflow sets MC1, which in turn loads the down counter with
MODRL, starts the 8-bit counter, and sets L7 high. When the counter underflows, the
MC1 control bit is reset and the L7 output goes low until the next timer Timer 1
underflow.

Table 11-12 shows the different operation modes for the Modulator/Timer.
Table 11-12 Modes of PWM timer

Control bits in
CNTRL2 Operation Mode

L7 Function

MC3 | MC2 | MC2

0 0 0 | Normal I/O
50% duty cycle mode (clocked by t.)

0 1 X | Variable duty cycle mode (clocked by
t.) using Timer 1 underflow

1 0 X | Modulator mode (clocked by t.)
1 1 X | Modulator mode (clocked by CKI)

NOTE: MC1, MC2 and MC3 control bits are cleared
upon reset.

11.14 COMPARATOR

The COP820CJ has one differential comparator. Consumer appliances that must
measure temperature or pressure can use this comparator to perform analog to digital
conversion. Automotive applications that drive motors need to determine whether the
starter motor is turning, because this reduces the battery voltage so much that the
electric motor may stall. The comparator can test for this condition.

Pins L0, L1 and L2 are used for the comparator. The output of the comparator can be
connected to the LO pin, read by software, or both. The pins are assigned as follows:

Lo Comparator output
L1 Comparator inverting input
L2 Comparator non-inverting input

COP820CJ 11-21

Comparator Control and Status Bits
These bits reside in register CNTRL2 (Address 00CC Hex):

CMPEN Enables comparator (“1” = enable, “0” = disable)
CMPRD Reads comparator output internally (CMPEN = 1, CMPOE = X)
CMPOE Enables comparator output to pin LO (“1” = enable, “0” = disable)

To enable the comparator, the programmer should set up L1 and L2 as high impedance
inputs using PORTLD and PORTLC, and set the CMPEN bit. The comparator output can
be viewed by reading the CMPRD bit. To enable the comparator output, set up L0 as an
output using PORTLC, and set the CMPOE bit. If CMPOE is cleared, CMPEN is set and
pin LO is configured as an output, pin L0 will be set to OV.

The comparator Select/Control bits are cleared after a reset, disabling the comparator. To
save power, the program should disable the comparator before the device enters HALT
mode.

The comparator rise and fall times are symmetrical. Refer to the COP820CJ datasheet
for information on the DC and AC characteristics of the comparator.

A programming example for the comparator is given in the Applications chapter showing
an A/D conversion with the COP820CJ.

11.15 MULTI-INPUT WAKEUP

The Multi-Input Wakeup feature is used to wake up the device from the HALT mode by
means of a transition on one or more of the Port L pins. This feature is useful when the
microcontroller has to exit the HALT mode from more than one external wakeup
condition. For example, a remote control unit with fifty keys must exit HALT mode as
soon as any one of the many keys is pressed. This can be implemented on the COP820CJ
by arranging the keys in a matrix and using Multi-Input Wakeup on the key matrix

Tammardo
mipuus.

Figure 11-7 shows the block diagram for the Multi-Input Wakeup feature. This feature
can also be used for latching high-to-low or low-to-high transitions occurring on the
selected Port L pins. This does not require the use of HALT mode.

Multi-Input Wakeup Registers

WKEN Contains bits to enable Multi-Input Wakeup for individual Port L pins
(“1” = enabled)

WKEDG Contains bits to select the type of transition sensed on individual Port L
pins (“1” = negative edge)

WKPND Contains Wakeup Pending flags for individual Port L pins (“1” = pend-
ing)

When using this feature, the programmer must configure the Port L pins intended for
use as Wakeup signals as inputs and clear the WKPND register. The programmer should
program the corresponding bits of the WKEDG register. To enable Wakeup on a rising

11-22 COP820CJ

INTERNAL DATA BUS

v
7 ------ 0
s
WKEN G7
DATA BIT HALT
R Q
[(] ‘
Stop/Start
WAKEUP
[¥4]
WKEDG WKPND
oscj¢— CKi
- CKT| , cko
CHIP CLOCK: l
R WATCHDOG
Q S PRESCALER
COP800-20

Figure 11-7 Multi-Input Wakeup Logic

edge for a particular pin, the programmer should reset the associated WKEDG bit to 0.
To enable Wakeup on a falling edge for a particular pin, the programmer should set the
associated WKEDG bit to 1. Finally, the programmer should select which particular Port
L bit or combination of Port L bits will be configured as Multi-Input Wakeup pins, by
setting the respective bits in WKEN.

As soon as any one or more of the WKEN bits have been set, the occurrence of any one or
more of the selected trigger conditions on the relevant Port L pins causes the associated
bits in WKPND to be set to 1. If any bit of the WKPND register is set while the
COP820CJ is in HALT mode, the part will exit the HALT mode within two t¢ cycles if the
External or RC clock options have been used, or after an additional delay of 256 t(cycles
if the Crystal/Resonator option has been used. This 256 tc delay is generated by using
the Watchdog prescaler. If the program attempts to enter HALT mode while any bit is
still set in the WKPND register and its associated bit in the WKEN register is also set,
the device will not enter HALT mode. It is the responsibility of the programmer to ensure
that the WKPND register is cleared before attempting to enter HALT mode.

COP820CJ 11-23

An Application Using Multi-Input Wakeup

Figure 11-8 shows the circuit diagram for a battery-powered remote control unit. The
function of the unit is to transmit a specific code, whenever a particular key is pressed,
using an infra-red LED driven from the modulator output L7. The additional LED
connected to pin G3 is turned on by the software whenever a key is pressed to indicate to
the user that the unit is functioning correctly. In order to conserve battery power, the unit
is held in HALT mode until a key is pressed. The COP820CJ should come out of HALT
mode whenever any key is pressed. The key is then decoded, the relevant code
transmitted, and the part set back into HALT mode.

[[TTF 1
il l

DO RES
D1 L7 I
D2

[0]
4
o
<
Q
(9]
g

SIS
A
A
R
N RS
-
H

>
L5 >

CKI CKO

Keyboard matrix i Ei ‘ COP820CJ

Figure 11-8 Battery-Powered Remote Control Unit

The Multi-Input Wakeup feature may be used to meet these requirements. After the end
of the previous transmission, the keyboard is initialized by using the following procedure.
The program sets up pins L0-L6 as inputs with weak pull-up resistors and Port D to logic
0. Pins GO, G1, G2, G4 and G5 are set by the software to output logic 0. The program sets
bits 0-6 of the WKEDG register to one, indicating that the COP820CJ will wake up after
a high-to-low transition on these pins. The WKPND register is cleared and then WKEN
is loaded with O7F hex by the program, enabling Wakeup on pins L0-L6 and disabling
Wakeup on pin L7. Finally, the program is put in HALT mode.

As soon as any one of the keys is pressed, the Port L pin in the same row as the key is
driven down from its weak pull-up high state to zero, causing a high-to-low transition.
This generates a Wakeup signal. Because the crystal oscillator option has been selected,
the COP820CJ waits for 256 t¢ cycles before proceeding.

11-24 COP820CJ

The program now interrogates the WKPND register to determine the row of the key that
has been pressed, and continues with keyboard scanning, debouncing, decoding, and
transmission routines.

Example of Keyboard Initialization Routine

LD WKEN, #000 ; Suspend Wakeup feature during setup
LD PORTLD, #07F ; Pins L0-L6 weak pull-ups, pin L7 output logic low
LD PORTLC, #080 ;

LD PORTD, #000 ; Pins DO0-D3 logic low

LD PORTGD, #000 ; Pins GO-G5 outputs logic low

LD PORTGC, #03F 5

LD WKEDG, #07F ; LO-L6 active on high-to-low transition
LD WKPND, #000 ; Clear Wakeup pending flags

LD WKEN, #07F ; Enable Wakeup on LO-L6

SBIT 7,PORTGD ; Enter HALT mode

NOP

NOP

; After HALT exited, WKPND scanned to identify row

11.16 MASK OPTIONS

The COP820CJ mask-selectable options are listed below. The options are programmed at

the same
Option 1:
=1
=2
=3

Option 2:

=2
Option 3:

time as the ROM pattern to provide the user with hardware flexibility.
CKI Input

Normal Mode Crystal (CKI/10); CKO for crystal configuration

Normal Mode External (CKI/10); CKO available as G7 input

R/C (CKI/1

WS a2

0); CKO available as G7 input
Brown Out

Enable Brown Out Protection (increased HALT current)
Disable Brown Out Protection

Bonding

28-pin DIP

20-pin DIP/SO

16-pin SO

28-pin SO

COP820CJ

11-25

11.17 EMULATION DEVICES

The following chart shows the emulators available for the different COP820CJ packages.
The emulators are discussed in detail in Appendix C.

Part Number l?,l::lf;t;r Emulator (Type)
COP820CJ-XXX/N | 28 DIP COP820CJMHD (MCM?)
COP820CJ-XXX/WM | 28 SO COP820CJMHEA® (MCM)
COP822CJ-XXX/N 20 DIP COP822CMHD (MCM)
COP822CJ-XXX/WM | 20 SO NONE
COP823CJ-XXX/WM | 16 SO NONE

a. Multi-chip Module (UV Erasable)
b. Same footprint as 28-pin SO

11-26 COP820CJ

Chapter 12

COP8780C

12.1 INTRODUCTION

The COP8780C is a member of the COPS microcontroller family. It is a fully static part,
fabricated using double-metal, double poly silicon gate microCMOS EPROM technology.
This device is available as UV erasable or One Time Programmable (OTP). This low-cost
microcontroller is a complete microcomputer containing all system timing, interrupt
logic, EPROM, RAM and I/O necessary to implement dedicated control functions in a
variety of applications. Features include an 8-bit memory-mapped architecture,
MICROWIRE/PLUS serial I/O, a 16-bit timer/counter with capture register and a multi-
sourced interrupt. Each I/O pin has software selectable options to adapt the COP8780C
to specific applications. High throughput is achieved with an efficient instruction set
operating at a rate of 1 microsecond per instruction.

relevant to all COP800 Basic Family members is not covered in this chapter, but may be
found in the first eight chapters of this manual. In this chapter, the term “COP8780”
refers to all COP8780C packages, including the COP8781C and COP8782C.

COP8780C 12-1

12.2 BLOCK DIAGRAM

The diagram in Figure 12-1 shows the basic functional blocks associated with the
COP8780. These blocks include the Arithmetic Logic Unit (ALU), Timer, MICROWIRE/
PLUS, /O ports, and on-chip memory.

KI RESET Vge GND EPROM CONTROL
| eprom »| Ram SIGNATURE AND
4KX8 — 128xs ECON REGISTERS
CLOCK
16-BIT
| TIMERICOUNTER INTERRUPT
WITH AUTOLOAD (TIMER &
PROG. COUNTER I |_aooress | IHALT I & CAPTURE REG EXTERNAL)
'
1 .]
CPU TIo
REGISTERS
ALU sl
A I s0 | microwIRE
I B PLUS
- —_—
SK
L sp
CNTRL Y y '
PSW :l ouwms 1o I lNPUTSl I I
INSTRUCTION
DECODER
PORTL PORTD PORT G PORTI PORTC
COP800-21

Figure 12-1 COP8780 Block Diagram

12.3 DEVICE PINOUT/PACKAGES

The COP8780 is available in UV erasable or OTP 20-pin DIP/SO, 28-pin DIP/SO, 40-pin
DIP and 44-pin PLCC packages. Figure 12-2 shows the COP8780 device package

pinouts.

Refer to the COP8780 datasheets for more information on the device packages.

12.4 PIN DESCRIPTIONS

The COP8780 has four dedicated function pins: Vg, GND, CKI and RESET. All other
pins are available as general purpose inputs/outputs or as defined by their alternate
functions. Voo and GND function as the power supply pins. RESET is used as the master
reset input, and CKI is used as a dedicated clock input. Table 12-1 lists the pin name,
type, number and function of all COP8780 signals.

12-2 COP8780C

c2—] 1 ~ 40— ct
c3— 2 39— co
G4/SO —] 3 38 }— G3mio
G5/SK —] 4 37— a2
Gé/SI — 5 36 |— G1
G7/CKO — 6 35 |— Go/NT
CKI— 7 34 — RESET
Veec—{ 8 4PN 331 anp
0— 9 DIP - 5l b7
11—10 31 }— ps
12 —11 30 |— b5
13 —12 29 |— b4
14 —13 28 |— D3
15 —14 27 }— b2
16 —{15 26 }— D1
17 —]16 25 |— Do
Lo —{17 24 |— L7
L1—{18 23— L6
L2—419 22— 1Ls
L3 —{20 214
W/
G4/S0 —] 1 20 |— G3mo
G5/SK —] 2 19— G2
Gé/si — 3 18 }— Gt
G7/CKO —] 4 _ 17— GOANT
20-PiIN REQET
CKl— 8 o Of RESET
Vee —] 6 15— GND
Lo— 7 14— 7
Ln— g 13— L6
24 o 12— L5
L3 — 10 11 |— L4

Figure 12-2 Device Package Pinouts

2 _vo o
(SRR I
N OO T OAN—TOMAN v
TTTTTIT101d
6 5 4 3 2 1 4443424140
Ccki— 7 39— GO/INT
Vec—] 8 38}—RESET
0 — 9 37}—GND
1 —1o 36—D7
12 —11 44-PIN 35+—D6
13 —12 PLCC 34}—nps
14 —13 33}—D4
15 —|14 32F—D3
16 —15 31}—D2
17 —{16 30}—D1
Lo —{17 29}—npo
18 19 2021 22 23 24 25 26 27 28
S9988828=21v9n
U
G4/SO — 1 28— G3/TIO
G5/SK —] 2 27}—a2
G6/SI —] 3 26— Gt
G7/CKO —] 4 25— GO/INT
cki— 5 24— RESET
VCC — 6 23 _'GND
| 28-PIN |
10 7 ey 22— D3
n—s 21— D2
2— 9 20 }— D1
13— 10 19— Do
Lo— 11 18— L7
L —f 12 17— L6
L2— 13 16 |— L5
L3 —] 14 15 — L4
COP800-22
COPS8780C 12-3

Table 12-1 COP8780 Pin Assignments

ALTERNATE | 20 PIN | 28 PIN | 40 PIN | 44 PIN
PORT | TYPE | "pryNCTION | DIP/SO | DIP/SO| DIP | PLCC
o | 10 7 11 17 17
L1 /0 8 12 18 18
L2 | 1O 9 13 19 19
L3 | 1o 10 14 20 20
L4 | 1O 1 15 21 25
L5 | 1o 12 16 92 26
L6 | 1O 13 17 23 927
L7 | vo 14 18 24 28
G0 | UO | INTERRUPT 17 25 35 39
g1 | 1o 18 26 36 40
Gge | 10 19 27 37 41
Gs | vo |TIiO 20 28 38 42
G4 | 10 |so 1 1 3 3
e | 1o |sK 2 2 4 4
G6 1 |sI 3 3 5 5
G7 |UCKO | HALT RESTART | 4 4 6 6
DO 0 19 25 29
D1 0 20 26 30
D2 0 21 27 31
D3 0 22 28 32
10 I 7 9 9
11 I 8 10 10
12 I 9 11 1
I3 I 10 12 12
Ia I 13 13
15 I 14 14
16 I 15 15
17 I 16 16
D4 0 29 33
D5 0 30 34
D6 0 31 35
D7 | O 32 36
co | 1o 39 43
c1 | vo 40 44
c2 | vo 1 1
c3s | 1o 2 2
Vec 6 6 8 8
GND 15 23 33 37
CKI 5 5 7 7
RESET 16 24 34 38

12-4 COP8780C

12.5 INPUT/OUTPUT PORTS

The number of I/O ports available on the COP8780 device depends on package type. The
COP8780 20-pin packages have only a Port L and Port G. The 28-pin COP8780 parts
have a Port L, Port G, Port I and Port D. The 40- and 44-pin COP8780 packages have a
Port C in addition to the ports available on the 28-pin packages. All common COPS800
ports are described in Chapter 7 of this manual. However, a brief description of each port
is included in this section.

Port C, where available (40 pin DIP and 44 pin PLCC packages), is a 4-bit reconfigurable
I/O port. The port is configured by writing to the Port C configuration and data registers
as described in Section 2.5.3. Reading bits 4 - 7 of the Port C registers and input pins
returns undefined data. It is the user’s responsibility to mask out the upper four bits
when reading the Port C. This is accomplished by simply ANDing the Port C data with
the value 000F Hex. This will ensure that the upper four bits of the Port C data are
cleared. The Port C pins have not been assigned alternate functions.

Port D, where available, is a 4-bit (28 pin DIP/SO) or 8-bit (40 pin DIP and 44 pin PLCC)
output only port. When writing an 8-bit quantity to devices which only have a 4-bit D
Port, only the lower four bits are used. The Port D pins have no alternate functions.

Port G is an 8-bit reconfigurable I/O port. Pins 0-5 of the port are configured by writing
to the Port G configuration and data registers as described in Section 2.5.3. Pin G6 is a
dedicated input pin. Pin G7 is either an input or output, depending on the oscillator
option selected. The Port G pins have the following alternate functions:

GO0 INTR (External Interrupt Input)

Gl No alternate function

G2 No alternate function

G3 Timer 11/0

G4 SO0 (MICROWIRE/PLUS Serial Data Output)
G5 SK(MICROWIRE/PLUS Clock I/0)

G6 SI(MICROWIRE/PLUS Serial Data Input)

G7 Dedicated CKO (Clock Output) with Crystal Oscillator Mask Option or HALT/
Restart (Exit HALT Mode) with RC or External Oscillator Mask Option

Port I, where available, is a 4-bit (28 pin DIP/SO) or 8-bit (40 pin DIP and 44 pin PLCC)
input-only port. All Port I pins are Hi-Z inputs. On the devices which only have a 4-bit I
port, reading bits 4 - 7 of Port I will return undefined data. The user should mask out the
upper four bits on these devices. No alternate functions have been assigned to the Port I
pins.

Port L is an 8-bit reconfigurable I/O port. The port is configured by writing to the Port L
configuration and data registers as described in Section 2.5.3. The Port L pins have no
alternate functions.

COP8780C 12-5

12.6 PROGRAM MEMORY

The COP8780 contains 4096 bytes of UV-erasable or OTP EPROM memory. This memory
is mapped in the program memory address space from 0000 to OFFF Hex. The program
memory may contain either instructions or data constants, and is addressed by the 15-
bit program counter (PC). The program memory can be indirectly read by the LAID (Load
Accumulator Indirect) instruction for table lookup of constant data. Program memory is
discussed in detail in Chapter 2.

All locations in the EPROM program memory contain FF Hex (all 1’s) after the COP8780
is erased. OTP parts are shipped with all locations already erased to FF Hex. Unused
EPROM locations should always be programmed to 00 Hex so that the software trap can
be used to halt runaway program operation.

The COP8780 can be configured to inhibit external reads of the program memory. This is
accomplished by programming the security bit in the ECON (EPROM configuration)
register to zero. See Section 12.8 for details.

12.7 DATA MEMORY

The data memory address space on the COP8780 includes on-chip RAM, I/O, and
registers. The COP8780 can be configured to have either 64 or 128 bytes of RAM,
depending on the value of the “RAM SIZE” bit in the ECON register. If the 64-byte RAM
option has been selected, then the first 48 bytes are mapped from locations 0000 Hex
through 002F Hex. The remaining 16 bytes are mapped from locations 00F0 Hex through
00FF Hex. If the 128-byte RAM option has been selected, then the first 112 bytes are
mapped from locations 0000 Hex through 006F Hex. Again, the remaining 16 bytes are
mapped from locations 00F0 Hex through O0FF Hex. Refer to Chapter 2 for details on
the data memory architecture.

12.8 ECON (EPROM CONFIGURATION) REGISTER

The ECON register is used to configure the user-selectable clock, security, and RAM size
options. The register can be programmed and read only in EPROM programming mode.
Therefore, the register should be programmed at the same time as the program memory
locations 0000 through OFFF Hex. UV-erasable parts are shipped with FF Hex in this
register. OTP parts are shipped with 7F Hex in this register.

The COP8780C has a security feature which prevents reading of the EPROM program
memory when enabled. The security bit in the ECON register determines whether
security is enabled or disabled. If the security option is enabled, then any attempt to
externally read the contents of the EPROM results in the value 00EO Hex being read
from all program memory locations. If the security option is disabled, the contents of the
internal EPROM may be read. The ECON register is readable regardless of the state of
the security bit.

12-6 COP8780C

The format of the COP8780 ECON register is as follows:
Table 12-2 ECON Register

Bit7 | Bit 6 Bit 5 Bit 4 | Bit 3 | Bit 2 Bit 1 Bit 0
0 X |SECURITY |[CKI2 |CKI1| X |RAMSIZE| X

Bit 7 = 0 Must be programmed to zero.
Bit 6 = X Don’t care.
Bit 5 =1 Security disabled. External read and write access are allowed to

EPROM.

= 0 Security enabled. External read and write access are not allowed to
EPROM.

Bits 4,3 = 1,1 External CKI option selected.

= 0,1 Not allowed.

= 1,0 RC oscillator option selected.

= 0,0 Crystal oscillator option selected.
Bit 2 = X Don’t care.

Bit1 =1 Selects 128 byte RAM option. This emulates COP840 and COPS880.
= 0 Selects 64 byte RAM option. This emulates COP820.
Bit 0 = X Don’t care.

12.9 REGISTER BIT MAPS

The COP8780 devices have two registers that contain hardware control flags and bits.
These registers, CNTRL and PSW, are located in the COP800 core and are described in
the CORE REGISTERS section of this manual. The bit maps for these registers are
shown below.

The PSW register bits are:

GIE Global interrupt enable (enables interrupts)

ENI External interrupt enable

BUSY MICROWIRE/PLUS busy shifting flag

IPND External interrupt pending

ENTI Timer 1 interrupt enable

TPND Timer 1 interrupt pending (timer underflow or capture edge)
C Carry Flip/Flop

COP8780C 12-7

HC Half-Carry Flip/Flop
Table 12-3 PSW Register Bits

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0
HC C TPND ENTI IPND BUSY ENI GIE

The timer and MICROWIRE/PLUS control register bits are:
SL1 & SLO Select the MICROWIRE/PLUS clock divide-by (00=2,01=4,1x=8)

IEDG External interrupt edge polarity (0 = rising edge, 1 = falling edge)
MSEL Selects G5 and G4 as MICROWIRE/PLUS signals SK and SO
TRUN Used to start and stop the timer/counter (1 = run, 0 = stop)

TC1 Timer 1 Mode Control Bit

TC2 Timer 1 Mode Control Bit

TC3 Timer 1 Mode Control Bit

Table 12-4 CNTRL Register Bits

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TC1 TC2 TC3 TRUN | MSEL IEDG SL1 SLO

12.10 MEMORY MAP

The COP8780 is based on a memory mapped architecture. All data memory, I/O ports,
port registers and function registers are mapped into the data memory address space.
Table 12-5 shows the organization of the data memory address space and the mapping of
specific addresses. Read-only memory locations are noted in the table.

12.11 RESET
The following initializations are performed by the COP8780 at reset:

PORT C: TRI-STATE
PORT D: LOGIC HIGH
PORTG: TRI-STATE
PORT L: TRI-STATE
PC: CLEARED

PSW and CNTRL: CLEARED

12-8 COP8780C

Table 12-5 COP8780 Memory Map

ADDRESS CONTENTS
00 to 2F | 48 on-chip RAM bytes*
30to 7F | Unused RAM address space (reads as all 1’s)*
00 to 6F | 112 on-chip RAM bytes**
70 to 7F | Unused RAM address space (reads as all 1’s)**
CO0 to CF | Reserved
DO to DF | On-chip I/O and registers
DO Port L data register
D1 Port L configuration register
D2 Port L input pins (read only)
D3 Reserved
D4 Port G data register
D5 Port G configuration register
D6 Port G input pins (read only)
D7 Port I input pins (read only)
D8 Port C data register
D9 Port C configuration register
DA Port C input pins (read only)
DB Reserved
DC Port D
DD to DF | Reserved
EO to EF | On-chip functions and registers
EO to E8 | Reserved
E9 MICROWIRE/PLUS shift register (SIOR)
EA Timer lower byte
EB Timer upper byte
EC Timer autoload register lower byte
ED Timer autoload register upper byte
EE CNTRL control register
EF PSW register
FO to FF | 16 on-chip RAM bytes mapped as registers
FC X register
FD SP register
FE B register

* 64 on-chip RAM bytes selected in ECON register
** 128 on-chip RAM bytes selected in ECON register

COP8780C

12-9

B, X, SP: UNKNOWN at power-on reset
UNCHANGED at external reset

RAM: UNKNOWN at power-on reset
UNCHANGED at external reset

ACC and TIMER 1: UNKNOWN at power-on reset

UNKNOWN at external reset with Crystal oscillator clock op-
tion selected

UNCHANGED at external reset with R/C or External oscilla-
tor clock options

12.12 OSCILLATOR CIRCUITS

Section 2.7 describes the three clock oscillator configurations available for the COP8780.
The CKI 1 and CKI 2 bits in the ECON register are used to select the clock option. See
Section 12.8 for more details.

12.13 PROGRAMMING THE COP8780C

Programming the COP8780 is accomplished through a National Semiconductor COP8
Duplicator Board. Third-party programming support is also available. Refer to the
COP8780 datasheet for more information on third-party programming support.

The duplicator board is a stand-alone programmer capable of supporting all COP8780
package types when combined with available adaptor boards (Scrambler Boards). The
duplicator works in conjunction with a pre-programmed source EPROM containing the
application program. (The source EPROM may be programmed via a standard
programmer.) The duplicator board essentially copies the information from the source
EPROM into the COP8780 program memory.

In addition to the application program stored in locations 0000 through OFFF Hex, the
source EPROM must contain a value for the ECON register at location 1FFF Hex. The
following tables provide examples of some ECON register values. For more detailed
information, refer to Section 12.8.

Table 12-6 EPROM Security Enabled

RAM Memory | External CKI | RC Oscillator | Crystal Oscillator

64 Bytes 18 10 00
128 Bytes 1A 12 02

12-10 COP8780C

Table 12-7 EPROM Security Disabled

RAM Memory | External CKI | RC Oscillator | Crystal Oscillator

64 Bytes 38 30 20
128 Bytes 3A 32 22

12.14 ERASING THE COP8780C EPROM

The COP8780C EPROM program memory is erased by exposing the transparent window
of the UV-erasable package to an ultraviolet light source. Erasure begins to occur when
exposed to light with wavelengths shorter than approximately 4000 Angstroms (A). It
should be noted that sunlight and certain types of fluorescent lamps have wavelengths
in the 3000 A to 4000 A range.

After programming, opaque labels should be placed over the window of the device to
prevent functional failure due to the generation of photo currents, erasure and excessive
HALT current. Note that the device will also draw more current than normal (especially
in HALT mode) when the window of the device is not covered with an opaque label.

The recommended erasure procedure for the COP8780 is exposure to short wave
ultraviolet light with a wavelength of 2537 A. The integrated dose (UV intensity X
exposure time) for erasure should be at least 30 W-sec/cm?.

The COP8780 device should be placed within one inch of the lamp tubes during erasure.
Some lamps have a filter on their tubes, which should be removed before erasure. Refer
to the COP8780 datasheet for information on the minimum erasure time for various light
intensities.

An erasure system should be calibrated periodically. The distance from lamp to device
should be maintained at one inch. The erasure time increases as a square of the distance.
Lamps lose intensity as they age. When a lamp has aged, the system should be checked

to make sure that adequate UV dosages are being applied for full erasure.

Common symptoms of insufficient erasure are:
® TInability to be programmed.
* Operational malfunctions associated with V¢, temperature, or clock frequency.
® Loss of data in program memory.

¢ A change in configuration values in the ECON register.

COP8780C 12-11

12.15 EMULATION DEVICES

The COP8780C, COP8781C, and COP8782C can be used to emulate the COP820C,
COP840C, and COP880C family microcontrollers. Table 12-8 shows which COP800 Basic
Family members may be emulated by a COP8780.

Table 12-8 Emulation Cross Reference

Part Number | Package Type Emulates
COP8780CV 44 PLCC | OTP? COP880C
COPS8780CEL | 44 LDCC | UV Erasable | COP880C
COP8780CN 40 DIP OTP COP880C
COP8780CJ 40 DIP UV Erasable | COP880C
COP8781CN 28 DIP OTP COP8s81C
COP840C
COP820C
COP8781CJ 28 DIP UV Erasable | COP881C
COP840C
COP820C
COP8781CWM | 28 SO OTP C0P8siC
COP840C
COP820C
COP8781CMC | 28 SO UV Erasable | COP881C
COP840C
COP820C
COP8782CN 20 DIP OTP COP842C
COP822C
COP8782CJ 20 DIP UV Erasable | COP842C
COP822C
COP8782CWM | 20 SO OTP COP842C
COP822C
COP8782CMC | 20 SO UV Erasable | COP842C
COP822C

a. One-Time Programmable

12-12 COP8780C

Chapter 13

APPLICATION HINTS

13.1 INTRODUCTION

This chapter describes several application examples using the COP800 family of
microcontrollers. Design examples often include block diagrams and/or assembly code.
Certain hardware design considerations are also presented.

Topics covered in this chapter include the following:
¢ MICROWIRE/PLUS implementation examples
¢ Timer application examples
e Triac control example
e (COP820CJ design examples
¢ Programming examples (clear RAM, binary arithmetic)
¢ External power wakeup circuit
e External watchdog circuit
e Input protection on COP800 pins

¢ Electromagnetic interference (EMI) considerations

19 O
LDk AV,

A whole family of off-the-shelf devices is directly compatible with the MICROWIRE/
PLUS interface. This allows direct interface of the COP800 microcontrollers with a large
number of peripheral devices. The following sections provide examples of the
MICROWIRE/PLUS interface. These examples include a master/slave mode protocol,
code for a continuous mode of operation, code for a fast burst mode of operation, and a
COP820 to an NMC93C06 interface.

13.2.1 MICROWIRE/PLUS Master/Slave Protocol

This section gives a sample MICROWIRE/PLUS master/slave protocol, the slave mode
operating procedure for the sample protocol, and a timing illustration of the sample
protocol.

1. CS from the master device is connected to GO of the slave device. An active-
low level on the CS line causes the slave to interrupt.

APPLICATION HINTS 13-1

From the high-to-low transition on the CS line, there is no data transfer on the
MICROWIRE interface until the setup time T has elapsed (see Figure 13-1).

The master initiates data transfer on the MICROWIRE interface by turning
on the SK clock.

A series of data transfers takes place between the master and slave devices.

The master pulls the CS line high to end the MICROWIRE operation. The
slave device returns to normal mode of operation.

Slave Mode Operating Procedure (for the previous protocol):

1.

N

Set the MSEL bit in the CNTRL register to enable MICROWIRE; GO and G5
are configured as inputs and G4 as an output.

Normal mode of operation until interrupted by CS going low.

Set the BUSY flag and load SIOR register with the data to be sent out on SO.
(The shift register shifts eight bits of data from SO at the high-order end of
the shift register. Concurrently, eight new bits of data from SI are loaded into
the low-order end of the shift register.)

Wait for the BUSY flag to be reset. (The BUSY flag automatically resets after
8 bits of data have been shifted.)

If data is being read in, the contents of the SIO register are saved.
The prearranged set of data transfers are performed.

Repeat steps 3 through 6. The user must ensure step 3 is performed within ¢-
time (refer to Figure 13-1) as agreed upon in the protocol.

— T e— .

: ‘—3"'_‘—8"'—4—8—»‘_‘—3""4—8—»‘;4—8—;

: CLKs CLKS CLKS CLKS CLKS CLKS :

SK : :
e f

BUSY | ‘_J L L L L L
COP800-41
Figure 13-1 MICROWIRE/PLUS Sample Protocol Timing
13-2 APPLICATION HINTS

13.2.2 MICROWIRE/PLUS Continuous Mode

The MICROWIRE/PLUS interface can be used in continuous clock mode with the master
mode divide-by-eight clock division factor selected. The maximum data transfer rate for
this MICROWIRE/PLUS continuous clock mode is 64 microseconds per byte (equivalent
to 125 KHz) for parts operating with a 1 psec instruction cycle.

The continuous clock mode is achieved by resetting the BUSY bit under program control
just before it would automatically be reset with the hardware, and then immediately
setting the BUSY bit with the next instruction. The SIO MICROWIRE shift register is
then loaded (or read) with the following instruction. This loading of SIO occurs before the
SK clock goes high, even though the previous set BUSY bit instruction has started the
divide-by-eight (3-stage) counter. The B pointer must be already set up to point at the
PSW register where the MICROWIRE BUSY bit is located. This three-instruction
sequence is programmed as follows:

Instruction Bytes/Cycles
RBIT BUSY, [B] 111
SBIT BUSY, ([B] 1/1
X A, SIOR 2/3

This three-instruction sequence must be embedded in an instruction program loop that
is exactly 64 instruction cycles (t;, cycles) in length. This yields a 125-KHz (64
microseconds per byte) data transfer rate at the maximum instruction cycle rate of
1 MHz.

The following program demonstrates the use of the MICROWIRE/PLUS continuous
clock mode. The program continually outputs the 256 bytes of the current program
memory block on the MICROWIRE S0 output pin (G4). The low-order bit (GO) of Port G
is set to cover the transition period of the three-instruction sequence outlined previously,
where the SIO register is loaded with a new byte.

APPLICATION HINTS 13-3

PORTGD = 0D4

PORTGC = OD5

SIOR = 0E9

CNTRL = OEE

PSW = OEF

MWTEMP = OF0

MWCNT = OF1

MARK =0

BUSY =2

CYCLES

MWCONT: LD PORTGC, #031
LD PORTGD, #0
LD CNTRL, #0B
LD B, #PSW
LD MWCNT, #0

MWLOOP: LD A, MWCNT
INC A 3
X A, MWCNT 1
LAID 3
SBIT MARK, PORTGD 3
RBIT BUSY, [B] 4
SBIT BUSY, [B] 1
X A, SIOR 1
RBIT MARK, PORTGD 3
LD MWTEMP, #6 4

MWLUP: DRSW MWTEMP 3 3
Jp MWLUP }x6-2= 34
NOP 3 1
Jp MWLOOP 3
TOTAL CYCLES IN MWLOOP = 64

13.2.3 MICROWIRE/PLUS Fast Burst Output

The maximum COP800 MICROWIRE/PLUS master mode burst clock rate (using the
divide-by-two clock division factor) is 500 KHz. This assumes that the COP800
microcontroller is running at the maximum instruction cycle frequency of 1 MHz. The
equivalent time of one extra master mode SK clock cycle is necessary to set up the next

byte (and/or read the previous byte) in SIOR when using the burst mode SK frequency.
This yields an equivalent minimum data transfer time of 18 microseconds per byte.

The following program demonstrates the use of the MICROWIRE/PLUS burst clock
mode at the maximum data transfer rate (with the divide-by-two master mode clock
option selected). The X pointer is initialized to the TOP of a RAM table, where SIZE
represents the size of the table. This subroutine outputs the contents of the RAM table
on the MICROWIRE S0 output pin (G4).

13-4 APPLICATION HINTS

Register Definitions

SIOR = OE9

CNTRL = OEE

PSW = QOEF

MWCNT = OF0

BUSY =2

INSTRUCTION CYCLE NUMBER
CYCLES IN Figure 13-2

MWBRST: LD CNTRL, #8
LD B, #PSW
LD MWCNT, #SIZE
LD X, #TOP

MWLOOP: LD A, [X-] 3 13,14, 15
X A, SIOR 3 16, 17,18
SBIT BUSY, [B] 1 1
NOP* 1 2
NOP* 1 3
LAID* 3 4,5,6
DRSZ MWCNT 3 7,89
Jp MWLOOP 3 10,11, 12
RET
TOTAL CYCLES IN MWLOOP = 18

* Time Delay

The MICROWIRE BUSY bit is allowed to reset automatically with the hardware
following the eighth SK clock. The transfer of new data into the SIO register and the
transfer of the new input data from SIO to A occurs at the end of the second cycle of the
three-cycle “exchange A with SIO” instruction. This exchange instruction is immediately
followed by the “set BUSY bit” instruction to initiate another MICROWIRE serial byte
transfer. The associated timing for this 18-instruction cycle MICROWIRE loop is shown
in Figure 13-2.

BUSY "

2345678 910111213141516 17181 2 3 4 56 7 8 910 11121314 151617 18 1 2

COP800-42
Figure 13-2 MICROWIRE/PLUS Fast Burt Timing

APPLICATION HINTS 13-5

13.2.4 NMC93C06-COP820C Interface

This example shows the COP820 interface to a NMC93C06, a 256-bit E2PROM, using the
MICROWIRE interface. The pin connection involved in interfacing a NMC93C06 with
the COP820C microcontroller is shown in Figure 13-3. Some notes on the NMC93C06
interface requirements are:

1.
2.

The SK clock frequency should be less than 250 KHz.

CS low period following an Erase/Write instruction must not exceed 30 ms
maximum. It should be set at typical or minimum specification of 10 ms.

The start bit on DI must be set by a “0” to “1” transition following a CS enable
(“0” to “1”) when executing any instruction. One CS enable transition can ex-
ecute only one instruction.

In the read mode, following an instruction and data train, the DI is a “don’t
care” while the data is being output for the next 17 bits or clocks. The same
is true for other instructions after the instruction and data has been fed in.

The data out train starts with a dummy bit O and is terminated by chip dese-
lect. Any extra SK cycle after 16 bits is not essential. If CS is held on after all
16 of the data bits have been output, the DO will output the state of DI until
another CS low to high transition starts a new instruction cycle.

After a read cycle, the CS must be brought low for one SK clock cycle before
another instruction cycle starts.

I Vee
6

5
CKI
1 I
4 o o 3| o cc
—{D s 41 oo NMC93C06
3 2
SK SK
CoP820C s s
v 1
col
23 GND

l GND

Figure 13-3 NMC93C06-COP820C Interface

COP800-32

13-6 APPLICATION HINTS

The following table describes the instruction set of the NMC93C06. In the table
A3A2A1AO0 corresponds to one of the sixteen 16-bit registers.

Commands | Start Bit | Opcode | Address Comments
READ 1 0000 | ABA2A1A0 | Read Register 0-15
WRITE 1 1000 | A3A2A1AO0 | Write Register 0-15
ERASE 1 0100 | A3A2A1A0 | Erase Register 0-15
EWEN 1 1100 | 0001 Write/Erase Enable
EWDS 1 1100 | 0010 Write/Erase Disable
WRAL 1 1100 | 0100 Write All Registers
ERAL 1 1100 0101 Erase All Registers

All commands, data in, and data out are shifted in/out on the rising edge of the SK clock.
All instructions are initiated by a low-to-high transition on CS followed by a low-to-high
transition on DI.

A detailed explanation of the NMC93C06 E2PROM timing, instruction set, and other
considerations can be found in the datasheet. A source listing of the software to interface
the NMC93C06 with the COP820C is provided below.

.INCLD COP820.INC
;This program provides in the form of subroutines, the ability to erase,
;enable, disable, read and write to the NMC93C06 EEPROM.

i

SNDBUF = 0 ;Contains the command byte to be written to NMC93C06
RDATL = 1 ;Lower byte of the NMC93C06 register data read
RDATH = 2 ;Upper byte of the NMC93C06 register data read
WDATL = 3 ;Lower byte of the data to be written to NMC93C06
;register
ADRESS = 5 ;The lower 4-bits of this location contain the
;address of the NMC93C06 register to read/write
FLAGS = 6 ;Used for setting up flags
;Flag value Action
;00 Erase, enable, disable, erase all
;01 Read contents of NMC93C06 register
;03 Write to NMC93C06 register
;Others Illegal combination
DLYH = OFO0
DLYL = OF1l

;The interface between the COP820C/840C and the NMC93C06 (256-bit EEPROM) consists of
;four lines: The GO (chip select line), G4 (serial out SO), G5 (serial clock SK), and
;G6 (serial in SI).

APPLICATION HINTS 13-7

; Initialization

LD PORTGC, #031 ;Setup GO, G4, G5 as outputs

‘LD PORTGD, #00 ;Initialize G data reg to zero

LD CNTROL, #08 ;Enable MSEL, select MW rate of 2tc
LD B, #PSW

LD X, #SIOR

i

;This routine erases the memory location pointed to by the address contained in the
;location “ADRESS.” The lower nibble of “ADRESS” contains the NMC93C06 register
;address and the upper nibble should be set to zero.

ERASE: LD A,ADRESS

OR A, #0CO

X A, SNDBUF
LD FLAGS, #0
JSR INIT

RET

;This routine enables programming of the NMC93C06. Programming must be preceded once
;by a programming enable (EWEN) .

i

EWEN: LD SNDBUF, #030
LD FLAGS, #0
JSR INIT
RET

i

This routine disables programming o

EWDS: LD SNDBUF, #0

LD FLAGS, #0
JSR INIT
RET

;This routine erases all registers of the NMC93C06

7

ERAL: LD SNDBUF, #020
LD FLAGS, #0
JSR INIT
RET

;This routine reads the contents of the NMC93C06 register. The NMC93C06 address is
;specified in the lower nibble of location “ADRESS.” The upper nibble should be set
;to zero. The 16-bit contents of the NMC93C06 register are stored in RDATL and RDATH.

7

READ: LD A,ADRESS
OR A, #080
X A, SNDBUF
LD FLAGS, #1
JSR INIT
RET

;This routine writes a 16-bit value stored in WDATL and WDATH to the NMC93C06 register
;whose address is contained in the lower nibble of the location “ADRESS.” The upper

;nibble of address location should be set to zero.

WRITE: LD A,ADRESS

OR A, #040
X A, SNDBUF

13-8 APPLICATION HINTS

LD FLAGS, #3

JSR INIT

RET
;This routine sends out the start bit and the command byte. It also deciphers the
;contents of the flag location and takes a decision regarding write, read or return
;to the calling routine.

’

INIT: SBIT 0, PORTGD ;Set chip select high
LD SIOR, #001 ;Load SIOR with start bit
SBIT BUSY, [B] ;Send out the start bit
PUNT1: IFBIT BUSY, [B]
JP PUNT1
LD A, SNDBUF
X A, [X] ;Load SIOR with command byte
SBIT BUSY, [B] ;Send out command byte
PUNT?2 : IFBIT BUSY, [B]
Jp PUNT?2
IFBIT 0, FLAGS ;Any further processing?
JP NOTDON ;Yes
RBIT 0, PORTGD ;No, reset CS and return
RET
NOTDON : IFBIT 1,FLAGS ;Read or write?
Jp WR494 ;Jump to write routine
LD SIOR, #000 ;No, read NMC93C06
SBIT BUSY, PSW ;Dummy clock to read zero
RBIT BUSY, [B]
SBIT BUSY, [B]
PUNT3: IFBIT BUSY, [B]
JP PUNT3
X A, [X]
SBIT BUSY, (B]
X A,RDATH
PUNT4 : IFBIT BUSY, [B]
JP PUNT4
LD A, [X]
X A,RDATL
RBIT 0, PORTGD
RET
WR494: LD A, WDATH
X A, [X]
SBIT BUSY, [B]
PUNT5: IFBIT BUSY, [B]
JP PUNTS
LD A, WDATL
X A, [X]
SBIT BUSY, [B]
PUNT®6 : IFBIT BUSY, [B]
JP PUNT6
RBIT 0, PORTGD
JSR TOUT
RET

i

;Routine to generate delay for write

TOUT: LD DLYH, #00A

APPLICATION HINTS 13-9

WAIT: LD DLYL, #0FF

WAIT1: DRSZ DLYL
Jp WAIT1
DRSZ DLYH
Jp WAIT
RET
.END

13.3 TIMER APPLICATIONS

This section describes some applications using the on-chip timer: speed measurement
using the Input Capture mode, a simple D/A converter using the PWM mode, and an
external event counter using the External Event Counter mode.

13.3.1 Timer Capture Example

The Timer Input Capture Mode can be used to measure the time between events. The
simple block diagram in Figure 13-4 shows how the COP820/840 can be used to measure
motor speed based on the time required for one revolution of the wheel. A magnetic
sensor is used to produce a pulse for each revolution of the wheel.

!
JUUL

TIO

MICROWIRE/PLUS
COP820/840 COP472 DISPLAY

TIMER
CAPTURE
INPUT

COP800-33

Figure 13-4 Timer Capture Application

In the capture mode of operation, the timer counts down at the instruction cycle rate. In
this application, the timer is set up to generate an interrupt on a TIO positive edge
transition. The timer is initialized to OFFFF Hex and begins counting down. An edge
transition on the TIO input pin of the timer causes the current timer value to be copied
into the RA register. In addition, it sets the timer interrupt pending flag, which causes a
program branch to memory location OFF Hex. The interrupt service routine for the timer
is stored at that program memory location. The interrupt service routine resets the timer
interrupt pending flag. It then reads the contents of RA and stores it in RAM for later

13-10 APPLICATION HINTS

processing. An RETI instruction is used to return to normal program execution and re-
enable subsequent interrupts (by setting the GIE bit).

On the next rising edge transition on TIO, the program returns to the interrupt service
routine. The value in RA is read again, and compared with the previously read value. The
difference between the two captured values, multiplied by the instruction cycle time,
gives the time for one revolution. This can be easily converted to a frequency. The
frequency may be displayed on an LCD using the COP MICROWIRE/PLUS interface and
a COP472-3 LCD Driver.

An example of the code that can be used for this application is provided below.

PSW = OEF
CNTRL = QEE
TPND =5
TRUN =4
PORTGC = 0DS
PORTGD = 0D4
LD PORTGC, #00 ;Configure G3/TIO as input
LD PORTGD, #08 ;Weak pull-up on G3
LD CNTRL, #0CO ;Timer as capture mode, positive edge
LD PSW, #011 ;Enable timer and global interrupts
LD TMRLO, #0FF ;Timer lower byte
LD TMRHI, #0FF ;Timer upper byte
LD TRALO, #0FF ;Auto-reload lower byte
LD TRAHI, #0FF ;Auto-reload upper byte
SBIT TRUN, CNTRL ;Start timer
SELF: JP SELF ;Wait for capture

;Timer interrupt handling routine

.=0FF
IFBIT TPND, PSW ;Is it timer interrupt?
Jp TIMSERV ;Yes
Jp Error ;No go to error routine

;Timer service routine

TIMSERV: RBIT TPND, PSW ;Reset pending flag
; (Process Timer Capture)

RETI ;jReturn from interrupt

13.3.2 Timer PWM Example

Figure 13-5 shows how a minimal-component D/A converter can be built out of the timer
register pair in the auto-reload mode. The timer is placed in PWM mode and initialized
with the ON time, and register RA (the auto-reload register) is initialized to the OFF
time. TIO/G3 is configured as an output and preset to logic high. By setting the TRUN
bit in the CNTRL register, the timer starts and counts down at the instruction cycle rate
when an underflow of the timer occurs, the TIO output pin is toggled, the contents of the
RA register (OFF time) are copied into the timer, and the TPND bit in PSW register is

APPLICATION HINTS 13-11

set. A timer underflow also generates a timer interrupt, where program control vectors
to program memory address OFF Hex. The interrupt service routine at that address
resets the timer interrupt pending flag and alternately replaces the value in the RA
register with either the OFF time or the ON time after each timer underflow. A PWM
signal appears on the TIO output pin.

TON

T OFF

TIO /

COP820/840

A simple D-A converter using the timer to generate a PWM output.

COP800-34

Figure 13-5 PWM Timer Application

With the ON time set equal to the OFF timer (50% duty cycle), the capacitor charges and
discharges slightly in each cycle, and the output remains at a fairly constant level. With
the duty cycle set larger or smaller than 50%, the capacitor gains or loses charge, and the
output voltage rises or falls.

An example of the code that can be used for this application is provided below.

;Operating the timer in PWM mode
; CONSTANT DECLARE

FLAG = 05
ONFLG =0
ONTMHI = 07
ONTMLO = OFF
OFTMHI = OF
OFTMLO = OFF

;Timer auto-reload mode running off internal clock.
; Interrupts are used.

;The output is a duty cycle output on G3.

;Timer logic automatically toggles G3.

7

PWMI:
LD FLAG, #00 ;jClear ONFLG i.e., start with off time
LD CNTRL1, #0A0 ;Timer stopped, G3 enabled, AR mode
LD PORTGD, #00 ;SBIT G3 low
LD PORTGC, #08 ;SBIT G3 as an output/TIO
LD TMRLO, #OFTMLO ;Initialize timer lower byte

13-12 APPLICATION HINTS

LD TMRHI, #OFTMLO ;Timer upper byte

LD TAUHI, #ONTMHI iAuto-reload register upper byte
LD TAULO, #ONTMLO ijAuto-reg. lower byte with on time
SBIT TRUN, CNTRL ;jStart timer
LD PSW, #011 ;Enable timer interrupts

SLEEP:
JP SLEEP ;Wait for timer underflow

7

;iThe interrupt routine below handles timer interrupts

.= X'00FF
TINTR:
RBIT TPND, PSW ;Got it, RBIT for future
IFBIT FLAG, ONFLG ;0n time?
JP SONT ;Need to set bit up for on time
SOFT:
LD T1RALO, #OFTMLO ;Off time
LD T1RAHI, #OFTMHI
SBIT FLAG, ONFLG
RETI
SONT:
LD T1RALO, #ONTMLO ;On time
LD T1RAHI, #ONTMHI
RBIT FLAG, ONFLG
RETI
.END

13.3.3 External Event Counter Example

This mode of operation is very similar to the PWM Mode of operation. The only difference
is that the timer is clocked from an external source. This mode provides the ability to
perform control of a system based on counting a predetermined number of external
events, such as searching for the nth sector on a disk or testing every nth part on an
assembly line. The code for this example is provided below.

; Operating the timer in External Event Counter Mode

PSW = OEF
CNTRL = OEE
TPND =5
TRUN =4
PORTGC = 0D5
PORTGD = 0D4
RBIT 3, PORTGC ;Configure G3/TIO as Hi-Z input
RBIT 3, PORTGD ;
LD CNTRL, #00 ;Select timer as external event counter
LD PSW, #011 ;iEnable timer and global interrupts
LD TMRLO, #COUNTO ;Timer lower byte
LD TMRHI, #COUNT1 ;Timer upper byte
LD TRALO, #Count0 ;Auto-reload lower byte
LD TRAHI, #Count1 iAuto-reload upper byte
SBIT TRUN, CNTRL ;Start timer
SELF: JP SELF ;Wait for the n-th count

APPLICATION HINTS 13-13

;Timer interrupt handling routine

.=0FF
IFBIT TPND, PSW ;Is it timer interrupt?
JpP TIMSERV ;Yes
JP ERROR iNo go to error routine

;Timer service routine

TIMSERV: RBIT TPND, PSW ;Reset pending flag
RBIT TRUN, PSW ;Stop timer
{Process timer}

SBIT TRUN, PSW ;Start timer
RETI ;Return from interrupt

13.4 TRIAC CONTROL

The COP800 family devices provide computational ability and speed which is suitable for
intelligently managing power control. In order to intelligently control a triac on a cyclic
basis, an accurate time base must be established. This may be in the form of an AC 60Hz
sync pulse generated by a zero voltage detection circuit or a simple real-time clock. The
COP800 family is suited to accommodate either of these time base schemes while
accomplishing other tasks.

Zero voltage detection is the most useful scheme in AC power control because it affords
a real-time clock base as well as a reference point in the AC waveform. With this
information it is possible to minimize RFI by initiating power-on operations near the AC
line voltage zero crossing. It is also possible to fire the triac only a portion of the cycle,
thus utilizing conduction angle manipulation. This is useful in both motor control and
light-intensity control.

COPS software is capable of compensating for noisy or semi-accurate zero voltage
detection circuits. This can be accomplished by using delays and debounce algorithms in
the software. With a given reference point in the AC waveform, it becomes easy to divide

the waveform to efficiently allocate processing time.

These techniques are demonstrated in the code listing below. This application example
is based on the half cycle approach of AC power for triac light intensity control. The code
will intensify and deintensify the lamp under program control.

This program example is not intended to be a final functional program. It is a general-
purpose light intensifying/deintensifying routine which can be modified for a light
dimmer application. The delay routines are based on a 10 MHz crystal clock (1 s

instruction cycle). The COP820C’s 16-bit timer can be used for timing the half cycle of an
AC power line, and the timer can be started or stopped under software control. Timer T1
is a read/write memory mapped counter with an associated 16-bit auto-reload register.
Zero crossings of the 60 Hz line are detected and software debounced to initiate each half
cycle, so the triac is serviced on every half cycle of the power line. This program divides

13-14 APPLICATION HINTS

the half cycle of a 60 Hz AC power line into 16 levels. Intensity is varied by increasing or
decreasing the conduction angle by firing the triac at various levels. Each level is a fixed
time which is loaded into the timer. Once a true zero cross is detected, the timer starts
and triac is serviced.

A level/sublevel approach is utilized to vary the conduction angle and to provide a
prolonged intensifying period. The maximum intensity reached is at the maximum
conduction angle (level), and the time required to get to that level is loaded into the timer
in increments. Once a level has been specified, the remaining time in the half cycle is
then divided into sublevels. The sublevels are increased in steps to the maximum level
and the triac is fired 16 times per sublevel, thus creating the intensity time base. For
deintensifying, the sublevels are decremented.

APPLICATION HINTS 13-15

NATIONAL SEMICONDUCTOR CORPORATION
COP800 CROSS ASSEMBLER, REV:E,22 JUN 90
TIMER

THIS IS A GENERAL PURPOSE LIGHT DIMMER PROGRAM
USING COP800 TIMER WRITTEN BY FARID NOORY JULY 1990
IT USES A 10 MHZ CLOCK (1 us INSTRUCTION CYCLE TIME)

.INCLD COP820.INC
.TITLE TIMER, ‘TIMER APPLICATION EXAMPLE’

NRERBERERREREPHEEBOOIOUD WN
CLVLEIOUIBWNRO

; INITIALIZATIONS
Q0FO0 TEMP = OFO
00F1 LEVEL = OF1
00F2 FIN = 0F2 ;FIRE #
00F3 REG1 = OF3
0002 D200 LD FIN, #000 ;
0004 D140 LD LEVEL, #040 ; SUBLEVEL
0006 BCD500 LD PORTGC, #000 ;MAKE G PORT AS INPUT
0009 BCD404 LD PORTGD, #004 ;WITH WEAK PULL-UP
000C BCEES80 LD CNTRL, #080 ; TIMER AS AUTORELOAD
21 OO0OF BCEF00 LD PSW, #000 ;
22 0012 BCEA7D LD TMRLO, #07D ; TIMER AND AUTORELOAD REG
23 0015 BCEBOO LD TMRHI, #000 ; INITIALIZED TO .S5ms DELAY
24 0018 BCECES8 LD TAULO, #0EB ; EACH
25 0018 BCEDO3 LD TAUHI, #003
26
27 ; POWER UP SYNCHRONIZATION OR RESET SYNCH.
28 i
29 O0O01lE BDD672 BEG: IFBIT 2, PORTGP ;IF BIT G2 =1
30 0021 01 JP HI
31 0022 FB JP BEG ;TO SYNC. UP 60HZ
32 0023 BDD672 HI: IFBIT 2, PORTGP ;IS IT STILL ONE
33 0026 FC JP HI ;YES WAIT TILL ITS ZERO
34
35
36 i
37 ;TEST FOR TRUE ZERO CROSS (Valid Transition)
38 H
39 ;HERE WE PROVIDE DEBOUNCE FOR ZERO CROSS DETECTION
40 :
41 ; START OF DEBOUNCE DELAY
42 ;IF BIT G2 = 0
43 0027 3077 JSR DELAY ; TEMPORARY DELAY
44 0029 BDD672 IFBIT 2, PORTGP ;WAS IT FALLS?
45 002C F1 JP BEG ;YES :FALLS ALARM
46 002D 203B R DOIT: JMP INIT ;NO : START!
47 O002F BDD672 LO: IFBIT 2, PORTGP ;DEBOUNCE 0 TO 1
48 0032 01 JP D1 ;IF 1 GO TO DELAY
49 0033 FB JP LO ;IF NOT WAIT FOR A 1
50 0034 3077 D1: JSR DELAY ;WE HAVE A CLEAN TRANSITION
51 0036 BDD672 IFBIT 2, PORTGP ;IS IT STILL 172
52 0039 F3 JpP DOIT H
53 003A F4 Jp LO ;YES GO TO MAIN ROUTINE
54 ; ;NO KEEP DELAY GOING NOISE
55 ,.***
56 i
57 ; MAIN ROUTINE FOR INTENSIFY/DE-INTENSIFY
58 ; THE PROGRAM GETS HERE WHEN A TRUE ZERO IS DETECTED
59 ;*** CYCLE TIME
60 003B 3098 INIT: JSR TIMER ;DELAY FOR lms TO GET TO MAX ;2/5
61 003D 9DF2 LD A,FIN ;CONTAINS FIR NUMBER ;2/3
62 003F 9215 IFEQ A, #015 ;ARE WE AT 152 ;2/2
63 0041 04 JP THER :1/3
64 0042 8A BEGG: INC A i NO ;1/1
65 0043 9CF2 X A,FIN ;INC. THE FIRE # ;2/3

13-16 APPLICATION HINTS

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

0045
0046
0048
004a
004B
004D
004F
0051
0052
0053
0055
0056
0059
005B
005D
005E

005F
0062
0064
0065
0066
0068
0069
006A
006B
006E
0070
0073
0075

0077
0079
007a
007B

007¢C
007E
0080
0082
0084
0086
0087
0089

008A
008C
008E
0090
0092
0094
0095
0097

0098
009B
009E
009F
00A0
00A3
00A6

19
D200
9DF1
8B
9CF1
9DF1
9200
01
03
D140

BDF175
308a
307C

B8

BCDCFF
9CFO0
64

8A
9203
01

FB

64
BCDCO00
9CFO0
BDD672
2023
202F

D30F

FE
8E

9DEC
917D
9CEC
9DED
9100
A0

9CED
8E

9DEC
907D
9CEC
9DED
9000
A0

9CED
8D

BDEE7C
BDEF75
01
FB
BDEE6C
BDEF6D
8E

THER:

LP2:

LP3:

FIRE
FIN, #000
A, LEVEL
A

A, LEVEL
A, LEVEL
A, #000
LP2

LP3

LEVEL, #040

FIRE
5, LEVEL
ADD
SUB

;KEEP FIRING ;1/3
;3/3
;YES NEXT LEVEL ;2/2
;1/1
;RESTORE LEVEL ;2/3
;GET BACK A
;IF MAX LEEL #HAS REACHED ;2/2
;SET LEVEL ;2/2
; EXIT

;TEST WHICH LEVEL?
;IF MAX NOT YET REACHED ADD DELAY
;IF IT HAS SUBSTRACT DELAY

AR RREEEEEE R R R R R R RS S S R R R S e ugeu U
7

FIRE:

LP6:

LP5:

TWO :
HI1:

DELAY :
LOOP:

LD
X
CLR
INC
IFEQ
Jp

IFBIT
JMP
JMP

LD
DRSZ
JpP

; SUBROUTINES *
;*************************)\'*****************************

PORTD, #0FF ;PULL UP D PORT FOR ;3/3

A, TEMP ;32U SEC ;2/3

A ;1/1

A ;1/1

A, #03 ;1/2

LPS ;1/3

LP6 ;1/3

A ;1/1

PORTD, #00 ;PULL D PORT LO ;3/3

A, TEMP ;RESTORE A ;2/3

2, PORTGP ;TEST FOR WHICH DEBOUNCE ;1/1

HI ;NEEDED ;2/3

LO ;2/3

REG1, #00F ;1/1

REG1 ;1/1

LOOP ;1/3

;FOR DEBOUNCING ;1/5

RET

;DECREMENT THE TIMER BY THE DESIRED DELAY

SUB:

LD
SUBC
X

LD
SUBC
RC
X
RET

A, TAULO
A, #07D
A, TAULO
A, TAUHI
A, #000

A, TAUHI

; INCREMENT THE TIMER VALUE BY THE DESIRED DELAY

i

ADD:

TIMER:

LP1:

LP4:

LD
ADC

A, TAULO
A, #07D
A, TAULO
A, TAUHI
A, #000

A, TAUHI

TRUN, CNTRL
TPND, PSW
LP4

LP1

TRUN, CNTRL
TPND, PSW

i START THE TIMER
;CHECK FOR TIMER UNDERFLOW

;STOP THE TIMER
;RESET THE UNDERFLOW FLAG

APPLICATION HINTS

13-17

13.5 COP820CJ APPLICATION HINTS

This section gives suggestions on how and where the COP820CJ special features may be
used. Examples of how to use these features to implement system functions are given,
followed by an example of an application which uses the feature.

13.5.1 Analog To Digital Conversion Using On-chip Comparator

Some microcontroller applications require a low-cost, but effective way of performing
analog to digital conversion. A number of techniques for doing this are described in COP
NOTE 1: “Analog to Digital Conversion Techniques with COPS Family Microcontrollers”
and in Application Note 607: “Pulse Width Modulation A/D Conversion Techniques with
COP800 Family Microcontrollers”. This section explains how the COP820CJ comparator
can be integrated into two of the solutions described in these notes: the single slope A/D
conversion technique and the pulse width modulation A/D technique.

Figure 13-6 shows the hardware connections for either type of A/D conversion technique.
The voltage to be measured, Vyy, is connected to the inverting terminal of the
comparator, pin L1. The non-inverting terminal, pin L2, is connected to an RC network
via a current-limiting resistor. For the single slope technique, the comparator output on
pin L0 is connected to the Timer T1 input pin G3. This is not required for the pulse width
modulation technique.

The principle of the single slope conversion technigue is to measure the time it takes for
the RC network to charge up to the voltage level on the inverting terminal, by using
Timer T1 in the input capture mode. The cycle count obtained in Timer T1 can be

converted into real time if it is scaled by the COP8 clock frequency. If the COPS is clocked

G3
= TIMER T1 l
Lo
Vin L1

° >

Vcee
L2 COP820CJ
Rref Rlim

Cref

COP800-24

Figure 13-6 A/D Conversion Using COP820CJ Comparator and Timer T1

13-18 APPLICATION HINTS

by a crystal, this parameter is known very accurately. Applications connected to the
power line using an RC clock can use the line frequency as a reference with which to
measure the RC clock. The time measurement is then converted into the voltage, either
by direct calculation or by using a suitable approximation.

This very low cost technique is ideally suited to cost-sensitive applications which do not
require high accuracy. The pulse width modulation A/D conversion technique will
improve the accuracy at the cost of a higher conversion time. Application Note 607
describes this technique in detail.

The accuracy can be improved further by using a low-cost MM74HC4016 to multiplex the
analog input voltage with an accurate voltage reference used for calibration. Replacing
the resistor in the RC network with a current source will linearize the charging curve,
offering better resolution.

The user must ensure that the input voltage supplied to the comparator lies within its
input common mode range, which is shown in the characterization curves in the
datasheet. This data shows that the input common mode range goes down to OV if V¢
exceeds 4V and the magnitude of the offset voltage specification is relaxed to 25mV. The
user must ensure that Vyy does not exceed the maximum input common mode range
voltage during measurement.

Before the start of conversion, the capacitor must be discharged. The program must
reconfigure pin L2 as an output logic low to perform the discharge. Timer T1 must be
stopped and configured into input capture mode on a low-to-high transition. The T1 timer
register must be cleared and pin G3 set up as a Hi-Z input. The comparator initialization
described in Chapter 11 must also be performed. The conversion is started by starting
timer T1 and then converting pin L2 back to an input.

The initial value of the comparator is zero. A capture event will occur when the RC
voltage rises above the input voltage. If desired, the Timer T1 interrupt can be enabled
to produce an interrupt on this capture event. The capture time can then be read and
converted into voltage. This measurement technique has a resolution of 8 bits if the value
of the timer is scaled to contain 1300 (or more) counts after five RC periods. The accuracy
is primarily dependent on the accuracy of the user’s estimation of the RC time constant,
the offset voltage, and the user’s approximation routine.

The following code example demonstrates how this is achieved in assembly code. In this
example, polling the Timer T1 pending flag is used instead of interrupts. The 16-bit timer
value is stored in REFHI:REFLO.

APPLICATION HINTS 13-19

START:

. Discharge the capacitor by setting pin L2 to logic low and waiting.

LD PORTLC, #004 ;
LD PORTLD, #000 ;

‘DELAY:
LD RO, #020 ;
DRO: DRSZ RO ;
JP DRO

; Set up the comparator.

LD PORTLC, #001 ;

LD PORTLD, #000
SBIT CMPEN, CNTRL2
SBIT CMPOE, CNTRL2

; Set up Port G as a Hi-Z

LD PORTGD, #000 ;
LD PORTGC, #000 ;

; Pre-load the timer with

LD B, #TMRLO H
LD [B+],#O0FF ;
LD [B], #0FF

; Charge up the capacitor

LD B, #CNTRL1 H
LD [B+],#0DO ;

RBIT TPND, [B] i

FFFF hex

Pin L2 is set to an output,
to discharge the capacitor

logic low

Delay depending on current limiting
resistor

Pin LO is an output, pins L1 and L2 are
inputs

input port

Port G is an 8 bit input port
with the weak pull-ups disabled

Save bytes by using register B
Pre-load the timer with FFFF hex

through pin L5 and start the timer

Save bytes by using register B

Rising edge input capture, start Timer 1
B now points to PSW

Ensure that the pending flag is zero

; Wait until the first capture and save the captured value in REFHI:REFLO

WAITCL: IFBIT TPND, [B] ;
JP STORE1

JP WAITCl

STOREL: RBIT TPND, [B] H
LD X, #TAULO i
LD A, [X+] ;
X A,REFLO ;
LD A, [X-]

X A,REFHI H

; End of example

13-20 APPLICATION HINTS

Wait until the first capture

Reset the pending flag
Save bytes by using register X

Store TAULO in REFLO

Store TAULO in REFHI

13.5.2 Application Example: Battery-Powered Weight Measurement

Figure 13-7 shows the block diagram of a simple weight scale application. The pressure
sensor circuit is based on a buffered Wheatstone bridge arrangement. A current source
and a capacitor generate the linear ramp for the A/D conversion. A crystal oscillator is
required for an accurate time base. The modulator is used in 50% duty cycle mode to
generate an audible tone. A 24-segment LCD display indicates the weight to the user.
Four inputs are used for configuring the scale.

The COP820CJ is held in HALT mode when the appliance is not in use. As soon as a
weight is applied to the system, the switch closes, waking up the COP using the Multi-
Input Wakeup feature. The same port pin is then reconfigured as an output to power up
the sensor circuit, even when the switch is open. Measurement and display are then
performed. Finally, the COP820CJ reconfigures the sensor power pin as a pulled-up
Wakeup pin, disconnecting the power from the sensor circuit, and then enters HALT
mode.

The 16-bit timer is used to generate the interrupts required to refresh the LCD display.
A power-on reset circuit (not shown) is required in this application, as the Brown Out
should be disabled to keep the HALT mode current as low as possible. With Brown Out
disabled, the HALT mode current is typically less than 1uA. The Watchdog circuit is not
essential in this application, but could be used to improve system reliability.

13.5.3 Zero Cross Detection

Zero cross detection is often used in appliances connected to the power line. The line
frequency is a useful time base for applications such as industrial timers or an iron which
switches off if it has not been used for five minutes. Phase-controlled applications require
a consistent timing reference in phase with the line voltage.

The COP820CJ requires a square wave, magnitude Vg, at the same frequency as the
power line voltage, connected to a input port pin for a simple time base. For a phase-
control time base, this waveform should preferably be in phase with the line voltage,
although control is still possible if there is a predictable, constant phase lag, less than the
phase lag introduced by the load. The choice of zero cross detection circuit depends on
factors such as cost, the type of power supply used in the appliance, and the expected
interference.

The zero cross detection input can either be polled by software or can be connected to the
GO interrupt line. Polling the pin by software is the simplest technique and saves the
interrupt for another function, but has the disadvantage that the polling procedure can
be interrupted, causing inaccuracies in synchronization. Disabling the interrupt during
the polling is not always possible, as the interrupt may be required for the
implementation of other features.

Connecting the zero cross detection input to the external interrupt pin guarantees
synchronization. It has the additional advantage that a regular interrupt is generated,
which could interrupt the processor out of a fault condition. The interrupt routine only
needs to test the integrity of the stack to determine whether such a fault has occurred.

The following software example shows how software polling of the zero cross line is
implemented. The application example in Section 13.5.6 shows how interrupt-driven

APPLICATION HINTS 13-21

——L—/ HALT MODE Vce Vce

MULTI-INPUT
1 WAKEUP

|

R 16-BIT TIMER

Cref GENERAL
R R PURPOSE
1/O’s
F—U £
~— Vecc
R+DR
= SOFTWARE
USER SWITCHES TRAP
24 SEGMENT LCD DISPLAY
— o e T WITH 2-WAY MULTIPLEXING
1 - > CORE
1[/:
— MOD/TIMER
CRYSTAL OSCILLATOR

D BUZZER
T T

COP800-25

Figure 13-7 Battery-powered Weight Measurement Using COP820CJ

13-22 APPLICATION HINTS

zero cross detection can be used as a time base for phase control of appliances connected
to the line.

ZCD:
LD B, #STATUS ; Save bytes using the B pointer
IFBIT SYNCHRO, [B] ; If SYNCHRO is 1, wait for a rising edge
JP WLOHI ; otherwise wait for a falling edge.
WHILO: IFBIT 3, PORTLP ; Wait for falling edge
JP WHILO
SBIT SYNCHRO, [B] ; SYNCHRO = 1, so wait for rising edge
JP ENDZCD ; next time.
WLOHT : IFBIT 3, PORTLP ; Wait for a rising edge
JP RSYNC
JP WLOHI
RSYNC: RBIT SYNCHRO, [B] ; SYNCHRO = 0, so wait for a falling edge
; next time.
ENDZCD: ; End of example

13.5.4 Application Example: Industrial Timer

Figure 13-8 shows the block diagram for an industrial timer. The user turns the
potentiometer to set the required delay time. When the delay time has elapsed, a load is
switched on or off, as selected by the input switches. The time base is derived from the
power line using a simple zero cross detection circuit, thereby allowing the use of an
inexpensive RC clock instead of a crystal oscillator. There are two indicator diodes and a
buzzer driven by the Modulator/Timer.

The A/D conversion routine used by this industrial timer is based on the single slope
technique defined in Section 13.5.1, but it has an important difference. Instead of
connecting the variable resistor into a voltage divider circuit and measuring the voltage
using the single slope technique, the variable resistor forms part of the RC network. The
time that the variable RC circuit takes to exceed the fixed reference voltage is directly
proportional to the value of the resistor, simplifying the conversion from time into
resistance. The circuit as shown can be used to program a time proportional to the angle
of the potentiometer setting. The potentiometer can be replaced by a rotary switch
connected to a series of resistors, so that each position of the switch generates a different
resistance. Here the COP820CJ can identify the switch positions if the difference in each
resistance for each position is greater than the inaccuracy in measuring the absolute
resistance.

13.5.5 LED Drive Using the COP820CJ

The COP820CJ has four outputs, L4 to L7, which are individually capable of sinking high
currents. They are suitable for use in multiplexed, high-efficiency LED displays.
Figure 13-9 shows the structure for a three-way multiplexed LED display. Pins LO to L3
and DO to D3 drive the LEDs. All the current for the first eight segments is sunk through
L4. The current for the second and third set of eight segments is sunk by L5 and L,
respectively. The eight identical resistors connected to the ports and the eight identical
resistors connected to the Vg line limit the current. The values of the V¢ resistors and

APPLICATION HINTS 13-23

Vce
TWO INDICATOR LEDS

ZERO CROSS DETECTION

INTERRUPT
Vce Vce

TIMER T1
110V / 60Hz
240V / 50Hz

NN
D\

TIMING CONTROL

Vce

WATCHDOG

=00

HIGH SINK
OUTPUTS

'IHITS-{%
IIH'—'!TEH

HIGH-SIDE RELAY DRIVER

Vce
BROWN OUT
Vrelay
SOFTWARE ——O
USER SWITCHES TRAP
— e Py
— ° CORE
oo
Vce
e I MOD/TIMER I
RC OSCILLATOR BUZZER

.|H

COP800-26

Figure 13-8 Industrial Timer Application Using The COP823CJ

13-24 APPLICATION HINTS

Vce

J—<JLo
<1
3«12
1 —<«]L3
< Do
J—<«— D1
J—<«JD2
<Jos COP820CJ

aaasistie
Easaista
seveverro |

Figure 13-9 3-way Multiplexed Led Display With COP820CJ

APPLICATION HINTS 13-25

the port resistors set the current flow into the LED. The ratio of the port resistor value
to the V¢ resistor value should be sufficiently low so that when the port outputs are
switched low, the LED segments are never illuminated.

The multiplexing is performed in the following way. The COP820CJ generates a regular
interrupt at a rate known as the multiplex rate. If this rate is too high, the COP will be
overloaded. If it is too low, LED flicker will occur. The programmer should set the update
rate as required by the application. After the first interrupt, or underflow of the timer if
polling the TPND flag is chosen instead, the appropriate bit pattern for the first digit is
written to L0-L3 and D0-D3. Pin L4 is set low to enable current to flow through the diodes
in the first digit. Pins L5 and L6 are set high to stop current flowing in the second and
third digits. The processor waits for the next interrupt or timer underflow, writes the bit
pattern of the second digit to the relevant L and D port pins, and sets pin L5 low. L6 and
L4 are set high. The third digit is displayed in a similar way, this time setting L6 low and
setting L4 and L5 high. The procedure is then repeated.

The following software example demonstrates this procedure. The number in
COUNTHI:COUNTLO is initialized to 268 decimal and is displayed on the LEDs. The
variable DIGIT is a pointer to the digits.

13-26 APPLICATION HINTS

.INCLD COP820CJ.INC
; Variables

DIGIT = 0
COUNTLO
COUNTHI
TEMP = 3

non
N

; Start of code

INIT: LD SP, #02F
LD PORTLC, #0FF
LD COUNTLO, #068
LD COUNTHI, #002
LD DIGIT, #0
LD TMRLO, #02F
LD TMRHI, #0
LD TAULO, #0
LD TAUHI, #010
LD CNTRL, #090

WAIT: IFBIT TPND, PSW
JP OUT

JP WAIT

OUT: RBIT TPND, PSW
LD A, #3
IFEQ A,DIGIT
LD DIGIT, #0

DIGXOUT: JSR DIGOUT
LD A,DIGIT
INC A

AND A, #03

Initialize stack

Port L as output

Shown number digit 0 & 1
Shown number digit 2
Digit counter

First timer value

;Timer auto reload lo byte

i

’

Timer auto reload hi byte
Start timer, auto reload mode

Timer underflow?
Yes -> OUTPUT
No -> WAIT

Reset timer underflow bit

Last digit?
Yes -> reset digit counter

Output current digit

Increment and mask digit counter

APPLICATION HINTS 13-27

.=0100

DIGOUT:

TABLE:

DIGO:

DIG1:

DIG2:

DATA:

LD A,DIGIT

ADD A, #L (TABLE)

JID

; actual digit table:

.ADDR DIGO
.ADDR DIG1
.ADDR DIG2

LD A,COUNTLO
JSR DATA
RBIT 4, PORTLD
RET

LD A,COUNTLO

-SWAP A

JSR DATA
RBIT 5, PORTLD
RET

LD A,COUNTHI
JSR DATA
RBIT 6, PORTLD
RET

JSR BCD27
X A,TEMP
LD A, TEMP
OR A, #0FO0
X A, PORTLD
LD A, TEMP
AND A, #0F0
X A, TEMP
LD A, PORTD
SWAP A
AND A, #00F
OR A, TEMP
SWAP A

X A,PORTD
RET

13-28 APPLICATION HINTS

; Choose the correct subroutine depending on

DIGIT

Least significant nibble
Prepare data lines
Switch on digit 0

Output middle nibble

It’s the higher nibble of COUNTLO
Prepare data

Switch on digit 1

Output most significant nibble
Prepare data
Switch on digit 2

Conversion BCD to 7 segment code
Save to temporary variable

and restore A

Switch off all digits

and write L Port value

Get actual BCD value

Clear the lower nibble

Save value

Read D Port value

Clear the higher nibble
Combine with prepared TEMP

and write it back

BCDTAB: ; Example of a BCD to 7 segment table
.BYTE O3F i
.BYTE 006 ;
.BYTE 05B ;
.BYTE O04F ;
.BYTE 066 i
.BYTE 06D ;
.BYTE 07D H
.BYTE 007 i
.BYTE 07F ;
.BYTE 06F H
.BYTE 077 H
.BYTE 07C H
.BYTE 058 H
.BYTE O0O5E H
.BYTE 079 ;
.BYTE 071 ;

MEHUOQOWPOWoOoJaU s WNRE o

BCD27: ; BCD to 7 segment conversion routine
AND A, #00F ; Mask out upper nibble of A
ADD A, #L (BCDTAB) ; Look up value in table.
LAID
RET

.END

13.5.6 Application Example: Temperature Control

Figure 13-10 shows the block diagram for a household appliance with temperature
control such as a coffee maker. The appliance measures the temperature using a
thermistor which is linearized with a parallel resistor and connected to the COP820CJ
comparator. This configuration performs single slope A/D conversion. The zero cross
detection circuit provides the time-base for the system used for calibration of the A/D
converter and for the generation of the time display. A high efficiency, low power 24
segment LED display is connected to the COP820CJ to indicate elapsed time and the
operating mode to the user. The heater switch is connected to a high-side driver to ensure
additional safety. If the relay primary winding is disconnected or shorted to ground, the
heater will not operate. Four switches for user input have been provided.

The safety of the system is enhanced by using the Brown Out option, the Watchdog timer
and the software interrupt. All unused code areas should be filled with 00 hex, the opcode
for the INTR instruction. The Watchdog Timer is used to prevent the program from being
caught in an infinite loop. The Brown Out detection protects against transients on the
power supply.

13.5.7 Phase Control of an AC Load

The variable duty cycle mode of the Modulator/Timer, in conjunction with a zero cross
detection interrupt routine is ideally suited to phase control of single-phase AC loads.
The program example below shows how a triac is triggered 6.65 ms after the zero-cross
on each half-cycle of the power line. The crystal frequency is assumed to be 10 MHz,
resulting in a resolution of 1 us on Timer T1.

APPLICATION HINTS 13-29

24 SEGMENT LED DISPLAY

ZERO CROSS DETECTION (LOW CURRENT, HIGH EFFICIENCY)
INTERRUPT
= TIMER T1 I
110V / 60Hz
240V / 50Hz
TEMPERATURE SENSOR
Vce Vce D
Rp Rth Rref Rlim
WATCHDOG
Cref
HIGH SINK
1 OUTPUTS
S
= Vee HIGH-SIDE RELAY DRIVER
BROWN OUT
Vce
SOFTWARE —O0
USER SWITCHES TRAP
— e 3 HEATER
J SWITCH
= CORE
oo l———-o
. r——A /
o —
Vcec
= MOD/TIMER
RC OSCILLATOR

I BUZZER

COP800-28

Figure 13-10 Temperature Controlled Appliance Using COP820CJ

13-30 APPLICATION HINTS

After each interrupt, Timer T1 is loaded with the desired angle of 6.655 ms or 01A00 hex
and MODRL is loaded with 25 to give a triac gate pulse width of 26 us. The variable duty
cycle mode is initialized and Timer T1 is started.

This example is suitable for the phase control in light dimmer or in motor control
applications. Figure 13-11 shows a schematic of such an application, using blocks already
encountered in the previous examples. Here, the power is directly controlled by the value
of the variable resistor. The A/D conversion routine cannot use Timer T1 to generate
interrupts in this example. However, Timer T1 can still be read as a time-base within any
particular half cycle.

.incld COP820CJ.INC

ANGLEL = 000
ANGLEH = 001

START:

LD SP, #02F ; Initialize the stack

RBIT 7, PORTLD ; Pin L7 is an output, logic low for TRIAC

SBIT 7,PORTLC

RBIT 3, PORTGD ; Pin G3 is a Hi-Z input

RBIT 3, PORTGC

RBIT 0, PORTGD ; Pin GO is a Hi-Z input for 2ZCD

RBIT 0, PORTGC

LD B, #TAULO

LD [B+], #0FF ; Maximum possible value in the

LD [B+], #0FF ; auto-reload register
; B now points to CNTRL

LD [B+],#0A7 ; Auto-reload, toggle, stop timer, rising
; interrupt edge
; B now points to PSW

LD [B],#002 ; External ZCD interrupts enabled,

; pending flags cleared

LD B, #ANGLEL

LD [B+]1,#000 ; Set the firing angle to 1A00 hex

LD [B+],#01A

SBIT GIE, PSW ; Enable ZCD interrupts

WAIT: JP WAIT ; Wait for interrupt

; Interrupt handler

.=0FF
IHDL:
IFBIT IPND, PSW ; An external interrupt indicates a zero
JP ZCD ;i Cross event.
FAIL: JP FAIL ; A software interrupt will have
; caused this event.
ZCD: RBIT TRUN, CNTRL1 ; Stop Timer T1

APPLICATION HINTS 13-31

Vce

ZERO CROSS DETECTION

I—{

INTERRUPT

110V / 60Hz
240V / 50Hz

TIMING CONTROL

Vce D

Vce
; ! ! WATCHDOG
I MODULATOR/ | |

TIMER
= Vce T0
—_ BROWN OUT LOAD
SOFTWARE

USER SWITCHES L__TRAP

— —

CORE
CRYSTAL OSCILLATOR D

T T

NOTE: Either Vg or GND must be connected to one of the power terminals
for this to function.

COP800-29

Figure 13-11 AC Phase Control Application Using COP820CJ

13-32 APPLICATION HINTS

LD B, #ANGLEL
LD X, #TMRLO

LD A, [B+] ; Load Timer T1 with the desired angle value
X A, [X+]
LD A, [B+]
X A, [X+]
LD MODRL, #25 ; Set the TRIAC firing pulse width to 26us
LD CNTRL2, #040 ; Set up modulator timer into variable
; duty cycle mode
RBIT 7,PORTLD ; Set up pin L7 to output logic 0
SBIT TRUN, CNTRL1 ; Start the timer.
EDGESW :
LD B, #CNTRL1
; Toggle the interrupt routine edge so
; that both +ve and -ve half cycles are
IFBIT IEDG, [B] ; used.
JP REDG
SBIT IEDG, [B
JP ENDINT
REDG: RBIT IEDG, [B]
ENDINT:

RBIT IPND, PSW
RETI

; End of the example

13.5.8 Application Example: Remote Control Unit

A battery-powered remote control unit application using the COP820CJ is presented in
Chapter 11. The unit transmits a specific code using an infrared LED each time a
particular key is pressed. For details, see Chapter 11.

13.6 PROGRAMMING EXAMPLES

This section is intended to be an overview of programming examples. For more detailed
and varied programming examples, refer to the Microcontroller Databook or the
Microcontroller Applications Engineering BBS at (408) 739-1162 (8NI).

13.6.1 Clear RAM

The following program clears all RAM locations except for the stack pointer. The value of
the argument to IFBNE may need to be adjusted, depending on the size of RAM in
specific family members.

APPLICATION HINTS 13-33

COP800 PROGRAM TO CLEAR ALL RAM EXCEPT SP

addr:

0000: LD OFC, #070 ;Define X-pointer as counter

0002: LD B, #0 :Initialize B pointer

0003: LD [B+],#0 ;Load mem with 0 and incr B pointer
0005: DRSZ OFC ;Decrement counter

0006: JP 0003 ;Skip if lower half RAM is cleared
0007: LD B, #0F0 ;Point B to upper half of RAM
0009: LD [B+],#0 ;Load upper RAM half with 0

000B: IFBNE #0D ;until B points to OFD (=SP)

000cC: JP 009 ;Skip if B=0FD

000D: LD B, #0 ;Initialize B to O

13.6.2 Binary/BCD Arithmetic Operations

The arithmetic instructions include the Add (ADD), Add with Carry (ADC), Subtract with
Carry (SUBC), Increment (INC), Decrement (DEC), Decimal Correct (DCOR), Clear
Accumulator (CLR), Set Carry (SC), and Reset Carry (RC). The shift and rotate
instructions, which include the Rotate Right through Carry (RRC), and the Swap
accumulator nibbles (SWAP), may also be considered arithmetic instruction variations.
The RRC instruction is instrumental in writing a fast multiply routine.

In subtraction, a borrow is represented by the absence of a Carry and vice versa.
Consequently, the Carry flag needs to be set (no borrow) before a subtraction, just as the
Carry flag is reset (no carry) before an addition. The ADD instruction does not use the
Carry flag as an input. It should also be noted that both the Carry and Half Carry flags
(Bits 6 and 7, respectively, of the PSW control register) are cleared with RESET and
remain unchanged with the ADD, INC, DEC, DCOR, CLR, and SWAP instructions. The
DCOR instruction uses both the Carry and Half Carry flags. The SC instruction sets both
the Carry and Half Carry flags, while the RC instruction resets both these flags.

The following program examples illustrate additions and subtractions of 4-byte data
fields in both binary and BCD (Binary Coded Decimal). The four bytes from data memory
locations 24 through 27 are added to or subtracted from the four bytes in data memory
locations 16 through 19. The results replace the data in memory locations 24 through 27.

These operations are performed both in binary and BCD. It should be noted that the BCD
preconditioning of adding (ADD) the hexadecimal value 66 is necessary only with the
BCD addition, not with the BCD subtraction. The binary coded decimal DCOR (Decimal
Correct) instruction uses both the Cary and Half Carry flags as inputs but does not
change the Carry and Half Carry flags. Also note that the #12 with the IFBNE
instruction represents 28 minus 16, since the IFBNE operand is modulo 16 (remainder
when divided by 16).

13-34¢ APPLICATION HINTS

BINARY ADDITION:

LD X, #16
LD B, #24
RC

LOOP: LD A, [X+]
ADC A, [B]
X A, [B+]
IFBNE #12
Jp LOOP
IFC
JP OVFLOW

BINARY SUBTRACTION:

LD X, #010
LD B,#018
sc
LOOP: LD A, [X+]
SUBC A, [B]
X A, [B+]
IFBENE #12
Jp LOOP
IFNC
JpP NEGRSLT
BCD ADDITION:
LD X,#010
LD B,#018
RC
LOOP: LD A, [X+]
ADD A,#066
ADC A, [B]
DCOR A
X A, [B+]
IFBNE #12
Jp LOOP
IFC
JP OVFLOW
BCD SUBTRACTION:
LD X, #16
LD B, #24
sc
LOOP: LD A, [X+]
SUBC A, [B]
DCOR A
X A, [B+]
IFBNE #12
Jp LOOP
IFNC
Jp NEGRSLT

;NO LEADING ZERO
; INDICATES DECIMAL

;OVERLFOW IF C

TImANT

; LEADING ZERO

; INDICATES HEX

iNEG. RESULT IF NO C
(NO C = BORROW)

; LEADING ZERO

; INDICATES HEX

;ADD HEX 66

; DECIMAL CORRECT

jOVERFLOW IF C

;NO LEADING ZERO
; INDICATES DECIMAL

;DECIMAL CORRECT

;NEG. RESULT IF NO C
(NO C = BORROW)

APPLICATION HINTS

13-35

Note that the previous additions and subtractions are not “adding machine” type
arithmetic operations in that the result replaces the second operand rather that the first.
The following program examples illustrate “adding machine” type operations where the
result replaces the first operand. With subtraction, this entails the result replacing the
minuend rather that the subtrahend.

BINARY ADDITION:

LD B, #16
LD X, #24
RC
LOOP: LD A, [X+]
ADC A, [B]
X A, [B+]
IFENE #4
Jp LOOP
IFC
Jp OVFLOW ;OVERLFOW IF C

BINARY SUBTRACTION:

LD B, #010
LD X,#018
sc

LOOP: LD A, [X+]
X A, [B]
SUBC A, [B]
X A, [B+]
IFBNE #4
Jp LOOP
IFNC-
JP NEGRSLT ;NEG. RESULT IF NO C

(NO C = BORROW)

LD B, #010
LD X,#018
RC

LOOP: LD A, [X+]
ADD A, #066
ADC A, (B]
DCOR A
X A, [B+]
IFBNE #4
JP LOOP
IFC
JP OVFLOW ;OVERFLOW IF C

BCD SUBTRACTION:

LD B,#16
LD X, #24
sC

LOOP: LD A, [X+]
X A, [B]
SUBC A, [B]
DCOR A
X A, [B+]
IFBNE #4
JPp LOOP
IFNC
Jp NEGRSLT ;NEG. RESULT IF NO C

(NO C = BORROW)

13-36 APPLICATION HINTS

The following hybrid arithmetic example adds five successive bytes of a data table in
ROM program memory to a two-byte SUM, and then subtracts the SUM from a two-byte
total TOT. Assume that the ROM table is located starting a program memory address
0401, while SUM and TOT are at RAM data memory locations 1, 0 and 3, 2, respectively,
and that the program is encoded as a subroutine.

ROM TABLE:
.=0401
.BYTE 102
.BYTE 41
.BYTE 31
.BYTE 26
.BYTE 5

TABLE: TOP DOWN
ARTHMETIC: BOTTOM UP

SUMLO = 0
SUMHI = 1
TOTLO = 2
TOTHI = 3

ARITH1: LD X, #5 ;SET UP ROM TABLE PTR
LD B, #0 ;SET UP SUM POINTER

LOOP: RC

. LD A,X ;LOAD ROM PTR INTO ACC

LAID ;READ VALUE FROM ROM
ADC A, [B] ;ADD SUMLO TO ROM VALUE
X A, [B+] ;PUT RSLT BACK IN SUMLO
CLR A ;CLR ACC
ADC A, [B] ;ADD SUMHI TO ACC
X A, [B-] ; PUT RSLT BACK IN SUMHI
DRSZ X ;DECR. & TEST ROM PTR
Jp LOOP ;REPEAT LOOP IF PTR NOT O
SC
LD B, #2

LUP: LD A, [X+] ;LOAD SUBTRAHEND FIRST
X A, [B] ;REVERSE OPERANDS FOR SUBTRACTION
SUBC A, [B]
X A, [B+] ; INCR. MINUEND POINTER
IFBNE #4 ;REPEAT LOOP IF B PTR NOT EQUAL TO 4
Jp LUP
RET

13.6.3 Binary Multiplication

The following program listing shows the program for a 16-by-16-bit binary multiply
subroutine. The multiplier starts in the lower 16 bits of the 32-bit result location. As the
multiplier is shifted out of the low end of the result location with the RRC instruction,
each multiplier bit is tested in the Carry flag. The multiplicand is conditionally added
(depending on the multiplier bit) into the high end of the result location, after which the
partial product is shifted down one bit position following the multiplier. Note that one
additional terminal shift cycle is necessary to align the result.

APPLICATION HINTS 13-37

972 ;COP800 MULTIPLY (16X16) SUBROUTINE
973 H MULTIPLICAND IN [1,0] MULTIPLIER IN [3,2]

974 ; PRODUCT IN [5, 4, 3, 2]

975 ;

976 ; VERNE H. WILSON 11/7/86

977 ;

978 00F0 CNTR = OFO

979 04B7 D011 MULT: LD CNTR, #17
980 04B9 5B LD B, #4
981 04BA 9A00 LD [B+1],#0
982 04BC 9EO00 LD [B],#0
983 04BE DCO0 LD X, #0
984 04CO0 A0 RC

985 04Cl AE MLOOP : LD A, [B]
986 04C2 BO RRC A

987 04C3 A3 X A, [B-]
988 04C4 AE LD A, [B]
989 04C5 BO . RRC A

990 04C6 A3 X A, [B-]
991 04C7 AE LD A, [B]
992 04C8 BO RRC A

993 94C9 A3 X A, [B-]
994 04CA AE LD A, [B]
995 04CB BO RRC A

996 04CC A6 X A, [B]
997 04CD 5A LD B, #5
998 04CE 89 IFNC

999 04CF 08 JP TEST
1000 04D0 AO RC

1001 04D1 5B LD B, #4
1002 04D2 BA LD - A, [X+]
1003 04D3 80 ADC A, [B]
1004 04D4 A2 X A, [B+]
1005 04D5 BB LD A, [X-]
1006 04D6 80 ADC A, [B]
1007 04D7 A6 X A, [B]
1008 04D8 CO TEST: DRSZ CNTR
1009 04D9 E7 JP MLOOP
1010 04DA 8E RET

13.6.4 Binary Division

The following program shows a subroutine for a 16-by-16-bit binary division. A 16-bit
quotient is generated along with a 16-bit remainder. The dividend is left shifted up into
an initially-cleared 16-bit test window where the divisor is test-subtracted. If the test
subtraction generates no high-order borrow, then the real subtraction is performed with
the result stored back in the test window. At the same time, a quotient bit (equal to 1) is
inserted into the low end of the dividend window to record that a real subtraction has
taken place. The entire dividend and test window is then shifted up (left shifted) one bit
position with the quotient following the dividend.

13-38 APPLICATION HINTS

Note that the four left shifts (LD, ADC, X) in the LSHFT section of the program are
repeated as straight-line code rather than a loop in order to optimize throughput time.

COP800 DIVIDE (16X16) SUBROUTINE
DIVIDEND IN [3,2]
DIVISOR IN [1,0]
QUOTIENT IN [3,2]
REMAINDER IN [5,4]

CNTR = OF0
DIV: LD CNTR, #16
LD B, #5
LD [B-1,#0
LD [B],#0
LD X, #4
LSHFT: RC
LD B,#2
LD A, [B)
ADC A, [B]
X A, [B+]
LD A, [B]
ADC A, [B]
X A, [B+]
LD A, [B]
ADC A, [B]
X A, [B+]
LD A, [B]
ADC A, [B]
X A, [B+]
TSUBT: SC
LD B, #0
LD A, [X+]
SUBC A, [B]
LD B,#1
LD A, [X-]
SUBC A, [B]
IFNC
JP TEST
SUBT : LD B, #0
LD A, [X]
SUBC A, [B]
X A, [X+]
LD B, #1
LD A, [X]
SUBC A, [B]
X A, [X-]
LD B, #2
SBIT 0, [B]
TEST: DRSZ CNTR
JMP LSHIFT
RET

With a division where the dividend is larger than the divisor (relative to the number of
bytes), an additional test step must be added. This test determines whether a high-order
carry is generated from the left shift of the dividend through the test window. When this
carry occurs, the program branches directly to the SUBT subtract routine. This carry can
occur only if the divisor contains a high-order bit. Moreover, the divisor must also be
larger than the shifted dividend when the shift has placed a high-order bit in the test
window. When this case occurs, the TSUBT test subtract shows the divisor to be larger
than the shifted dividend and no real subtraction occurs. Consequently, the high-order
bit of the shifted dividend is again left shifted and results in a high-order carry. This test
is illustrated in the following program for a 24-by-8-bit binary division.

APPLICATION HINTS 13-39

Note that the four left shifts (LD, ADC, X) in the LSHFT section of the program are
repeated with the JP jump to LUP instruction in order to minimize program size.

COP800 DIVIDE (24X8) SUBROUTINE
DIVIDEND IN [2,1,0]
DIVISOR IN [4]
QUOTIENT IN [2,1,0]
REMAINDER IN [3]

CNTR = OF0
DIV: LD CNTR, #24
LD B, #3
LD [B], #0
LSHFT: RC
LD B, #0
LUP: LD A, [B]
ADC A, [B]
X A, [B+]
IFBNE #4
JP LUP
IFC
JpP SUBT
TSUBT: SC
LD B, #3
LD A, [B+]
SUBC A, [B]
IFNC
Jp TEST
SUBT: LD A, [B-]
X A, [B]
SUBC A, [B]
X A, [B]
LD B, #0
SBIT 0, [B]
TEST: DRSZ CNTR

13.7 EXTERNAL POWER WAKEUP CIRCUIT

Power-on wakeup is a technique used in battery powered applications such as electronic
keys or digital scales to save battery power. Instead of using the HALT mode when the
application is not in use, the COP device is powered off. If there is only one input switch
in the application, the implementation is simple. This switch is put in series with the
battery, providing power to the circuit when the switch is closed.

If there is more than one switch, power-on wakeup can be achieved by using an NPN
transistor and one resistor per switch as shown in Figure 13-12. Here, the circuit ground
is connected to the battery negative terminal via the NPN transistor. If the base is
floating, it will not conduct. If the base is pulled to V¢ via a current-limiting resistor, it
will conduct, powering up the circuit.

An alternative technique is shown in Figure 13-7. Here the positive terminal of the
battery is connected to the V¢ line via a switch, a diode and two resistors per line. If a
switch is pressed, power is applied to the V¢ line. The pull-down resistors pull any ports
connected to open switches to ground. If the switch is closed, the voltage on the switch
will be V¢ plus the diode voltage drop. If this potential were directly applied to the L
port pin, the COP device would be driven outside the operating specification. Therefore,
series protection resistors are used on all Port L pins connected to the switches.

13-40 APPLICATION HINTS

Vce \TC Vce
= ﬂ
CKI RESET I

COP800

Vce

W

\}

)

Vce
1n
g =S

-

COP800-30

Figure 13-12 Power Wakeup Using An NPN Transistor

APPLICATION HINTS 13-41

<
0——{8

Vce []
CKi RESET
I
COP800
SR
D AR [J# o0
o o L1
o — 11 L2
e r—- 118

COP800-31

Figure 13-13 Power Wakeup Using Diodes And Resistors

13-42 APPLICATION HINTS

13.8 EXTERNAL WATCHDOG CIRCUIT

In the following application examples, the COPS device sends a continuous square wave
to an external Watchdog circuit. If the user program gets stuck in a software loop and the
square wave is not generated, the external circuit will provide a high transition (Circuit
A) or a low transition (Circuit B). The output of the Watchdog circuit may be connected
to the COP RESET pin or the system reset in order to generate a reset on a Watchdog
error.

Vee
OUTPUT
~130 Hz » GOES HIGH
I I I "F? | N
> MW
COP OUTPUT l
- I 33puF l
COP800-35
Figure 13-14 External Watchdog Circuit A
Vee
~130 Hz
22 pdF
I | Y OUTPUT
COP OUTPUT ! SF N l GOES LOW
- I 33 pF
COP800-36

Figure 13-15 External Watchdog Circuit B

APPLICATION HINTS 13-43

13.9 INPUT PROTECTION ON COP800 PINS

The COPS800 input pins have internal circuitry for protection from ESD. The internal
circuitry is shown in Figures 13-16 and 13-17.

—_— Vcc — VCC

, [-

[
<

COP800-37
Figure 13-16 Ports L/C/G Input Protection (Except G6)
Vee
‘_\ E p
_.) N
COP800-38

Figure 13-17 Port I Input Protection

13-44 APPLICATION HINTS

The input protection circuitry is implemented with the P_channel transistors. The
equivalent diode circuit is shown in Figure 13-18.

—1— Ve

AN

i

v

Y

A

COP800-39

Figure 13-18 Diode Equivalent of Input Protection

When the inputs are tri-stated and the input voltage on the pin is between GND and Veos
the input protection diodes are off. The only current drawn into or out of the pin is
leakage current. If the input is expected to be below GND and/or above V¢, an external
series resistor must be used to limit the input current below the maximum allowable
current.

In addition to limiting the input current to below the maximum latchup spec (specified
in the datasheet), the user should also consider the fact that drawing excessive
continuous current into the pin, even though below the maximum latchup current, may
cause overstress.

A typical example of drawing continuous current is in an automotive application where
the ignition signal (battery) is connected to an input pin through a series resistor.
Assuming a 100K series resistor with a tolerance of +10%, the worst case resistor value
is 90K. The battery voltage is assumed to be 12V for normal operation and 24V for a
“jump start.” The high voltage applied to the pin causes the on-chip protection diode to
be forward biased, resulting in current into the associated Vo metal trace. Based on a
diode threshold voltage of 0.6V, the voltage at the pin will be V¢ + 0.6V. Based on a V¢
value of 5V, the input current can be calculated as follows:

Normal Operation:
[12- (5+0.6)]

Input current = 90K = T71p'A
Jump Start:
Input current = 124+ (5+06)] _ 204p'A

90'K
A study of the internal circuitry indicates that the input pin can draw about 200 pA
without causing any damage or reliability problem.

APPLICATION HINTS 13-45

Another approach is to use appropriate external circuitry that prevents the input
protection diodes from being biased. An example is shown in Figure 13-19.

Vee

+12V o—{)l——W . INPUT

Ry COP820

COP800-40

Figure 13-19 External Protection of Inputs

The resistors are required to drop the +12V and the diode prevents the —12V from being
applied to the pin.

For Vy= 12V 15% and Vg = 5V + 5%, the resistor values are calculated to be:
R, =47K +5%
R, = 82K +5%

This analysis does not apply to G6, RESET, and CKI which do not have the protection
diodes. Implementation of the above circuit will result in a Vg that is between 0.7 V¢
and Vg, and a Vyy, that is between Vgg (0V) and 0.2 V.

13.10 ELECTROMAGNETIC INTERFERENCE (EMI) CONSIDERATIONS

13.10.1 Introduction

CMOS has become the technology of choice for the processors used in many embedded
systems due to its capability for low standby power consumption. However, CMOS is
prone to high current transients on the power supply as the internal logic switches.
These transients can easily be the source of high-frequency emissions from the system.
The system designer should anticipate and minimize unwanted electromagnetic

interference (EMI).

13-46 APPLICATION HINTS

13.10.2 Emission Predictions

“EMI in a typical electronic circuit is generated by a current flowing in a loop configured
within the circuit. These paths can be either Vc-to-GND loops or output-to-GND loops.
EMI generation is a function of several factors. Transmitted signal frequency, duty cycle,
edge rates, and output voltage swings are the major factors of the resultant EMI levels.”!

The formula for predicting the Electric Field emissions from such a loop is as follows:

) 1.32x10‘3lA(Freq)2x(1+(A)z)uz

Elyax D 2nD

where:
® |E|paxis the maximum E-field in the plane of the loop in uV/m
e [is the current amplitude in milliamps
® A is the loop area in square cm
e Lis the wavelength at the frequency of interest in meters
e D is the observation distance in meters
e Freq is the frequency in MHz
¢ and the perimeter of the loop P << A.

Applying this equation to a single standard output for a National Semiconductor
Microcontroller, and performing a Fourier analysis of the output switching at a frequency
of 20 MHz, yields the results shown in Table 13-1. These calculations assume a trace
length of 5 inches, a board thickness of 0.062 inches and a full ground plane. The load
capacitance is 100 pf.

Table 13-1 Electric Field Calculation Results

Harmonic | Current | |E|pax | | E|Max
(MHz) (mA) WV/M) | (dBuV/M)
20 37.56 8.3 18.4
40 3.66 0.3 -10.2
60 26.13 442 33.0
80 4.44 0.6 -4.4
100 16.82 80.2 38.1
120 4.71 2.0 6.0
140 11.21 104.0 40.4
160 4.86 5.8 15.2
180 7.82 1274 42.1

1. “FACT™ Advanced CMOS Logic Databook”, National Semiconductor, 1989

APPLICATION HINTS 13-47

Note that the assumption is made that the output is switching at 20 MHz, which is rarely
the case for a port output. There is noise, however, on the output at these frequencies due
to switching within the device. This is the noise which is coupled to the output through
Vcc and GND. Another point to keep in mind is that rarely does one single output switch,
but usually several at one time, thus adding the effective magnetic fields from all the
outputs which are switching.

Accurate analysis requires characterization of the noise present at the output due to V¢
or GND noise which is dependent on many factors, including internal peripherals in use,
execution code, and address of memory locations in use.

13.10.3 Board Layout

There are two primary techniques of reducing emissions from within the application.
This can be done either by reducing the noise or by controlling the antenna. Control of
the antenna is accomplished through careful PC board layout.

General

Standard good PC layout practices will go a long way toward reducing emissions. Traces
carrying large AC currents (such as signals with fast transition times, that drive large
loads) should be kept as short as possible. Traces that are sensitive to noise should be
surrounded by ground to the greatest extent possible. Ground and V¢ traces should be
kept as short and wide as possible to reduce the supply impedance.

Ground Plane

One of the most effective ways to control emissions through board layout is with a ground
plane. The use of a plane can help by providing a return path for fast switching signals,
thus reducing loop size for both power and signals.

Multilayer Board

The best way to provide a ground plane is through the use of a multilayer printed circuit
board. The large area and the proximity of the V¢ and GND planes provide additional
decoupling for the power, and provide effective return paths for both power and signals.

The problem with the use of a multilayer board, particularly in consumer related
industries, is cost. Due to the volumes involved, an addition of several dollars to the cost
of an item may be prohibitive.

13.10.4 Decoupling

Control of the emitted noise can be accomplished by several techniques, including
decoupling, reduced power supplies, and limitation of signal strength by the addition of

series resistance.

It is important to take the time to properly design the decoupling for CMOS processors.
Two decoupling techniques can and should be used to minimize both voltage and current

switching noise in the system.

13-48 APPLICATION HINTS

Capacitive Decoupling

Capacitive decoupling is commonly used to control voltage noise on the Vo and GND
lines of the board, but if the decoupling is properly designed and is kept as close as
possible to the power pins of the device, it can also reduce the effective loop area and thus
the antenna efficiency. Capacitive decoupling can prevent high-frequency current
transients from being seen by the power supply.

One factor of capacitive decoupling which is often overlooked is the frequency response
of the capacitors. Each capacitor, dependent on value, lead length, and dielectric
material, possesses a series resonant frequency beyond which the device has inductive
characteristics. This inductance inhibits the capacitor from responding quickly to the
current needs of the processor and forces the current to use the longer path back to the
main power supply.

These inductive characteristics can be countered by the addition of extra capacitors of
different values in parallel with the original device. As the value of the capacitor
decreases (for capacitors of similar manufacture), the resonant frequency increases.

Placing multiple decoupling capacitors across the power pins of the processor can
effectively improve the high frequency performance of the decoupling network.
Capacitance values are normally selected which are separated by a decade. However, it
is best to check the specifications of the capacitors which are used.

Inductive Decoupling

Another very effective method of decoupling which is rarely used is inductive decoupling.
The proper placement of ferrite beads between the decoupling capacitors and the
processor can significantly reduce the current noise on the power pins.

The use of inductive decoupling, which will increase the series impedance of the power
supply, appears to be contradictory to the effect of capacitive decoupling. However, the
purpose of inductive decoupling is to force nodes internal to the processor, which are not
switching, into providing the charge for the nodes which are switching.

Ferrite beads are very effective for this type of decoupling due to their lossy nature.
Rather than storing the energy and returning it to the circuit later, ferrites will dissipate
the energy as a resistor.

One should be aware of potential repercussions from the use of any type of series
isolation from the power supply. Due to the reduced Vg which may be present during
switching transients, interfacing to other devices in the system may be a problem. Since
the V¢ should only be reduced for the duration of the switching transient, this should
only be a problem if the other devices have especially sensitive and fast-responding
inputs.

13.10.5 Output Series Resistance

The addition of resistance in series with outputs can have a significant effect on the
emissions caused by the switching of the outputs.

APPLICATION HINTS 13-49

Outputs that drive large capacitive loads can have a lot of current flowing when they
switch. While the series resistance may slow the switching speed of the node and thus
affect the propagation delay, it can also have a large effect on emissions by reducing the
amplitude of the current spike that charges or discharges the load.

13.10.6 Oscillator Control

One very definite source of emissions is the system clock. The some oscillator is intended
to switch at high speed and therefore will emit some noise. Keeping the circuit loop of the
oscillator as small as possible will help considerably.

Ceramic resonators are available with the capacitive load included in a single three
terminal package. The use of these devices and placing them right next to the processor
can reduce emissions as much as 10 dB.

RC oscillators are particularly troublesome for emissions due to the high transient
current when the processor turns on the N-channel device that discharges the capacitor.
The transistor is meant to be large and to turn on strongly in order to discharge the
capacitor as quickly as possible. This allows simple control over the frequency of
oscillation but causes difficulty for the designer of systems for EMI-sensitive
applications.

13.10.7 Mechanical Shielding

A last resort for controlling emissions is the addition of mechanical shielding. While
shielding can be effective and can be easier from an electrical design standpoint, the
implementation and installation of a proper electromagnetic shield can be excessively
costly and time consuming.

It is much better to design the system with the control of emissions in mind from the start
rather than to apply bandages when it is time to begin production.

13.10.8 Conclusion

While electromagnetic emissions can be a problem for the designer of any electronic
system, it is particularly troublesome in the design of high speed CMOS systems. With
knowledge of the primary sources of noise, and the ways to combat that noise, it is
possible to design and build systems which are electromagnetically quiet.

Very few references to specific values of capacitance, resistance, or inductance have been
made in this document. The reason for this is that a value which works well in one
application may not be effective in another. The best way to determine the values which
will work well for a particular application is by experimentation.

13-50 APPLICATION HINTS

Appendix A

COP8 DEVELOPMENT SYSTEM

1 INTRODUCTION
1.1 MetaLink iceMASTER-400 Overview
1.2 MetaLink iceMASTER-400
1.3 MetalLink iceMASTER Debug Module
1.4 MetalLink iceMASTER Evaluation and Program-
ming Unit (EPU)
1.5 COP8 Assembler/Linker/Librarian Package
1.6 COP8 C Compiler
1.7 Fuzzy Logic Software
1.8 Form Fit Function Emulator Support
1.9 COP8 Programming Support

2 iceMASTER-400 FEATURES
2.1 MetalLink iceMASTER Feature Overview
2.2 iceMASTER Main Screen
2.2.1 Register Window
2.2.2 Internal RAM Data Window
2.2.3 Source Window
2.2.4 Status Window
2.2.5 Watch/Stack Window
2.3 Breakpoints/Trace Triggers
2.4 Assembler/Disassembler
2.5 Trace View
2.6 Performance Analyzer

3 iceMASTER SOFTWARE INSTALLATION
3.1 Installation Procedures
3.2 Emulating Different COP8 Family Members

4 CREATING AN EMULATOR DOWNLOAD FILE
4.1 Emulator Download File Formats

4.2 Generating a Common Object File Format File
(COFF)

4.2.1 Running the Assembler/Linker (Ver. 4.0 or
later)

4.3 Generating a Binary Code File (COD) File
4.3.1 Running the Bytecraft COP8 C Compiler
4.4 Generating a Symbolic Hex File (SHF)
4.4.1 Running the Assembler (Rev. E or later)
4.4.2 Creating an Exception Fiie
4.4.3 Creating a Symbolic Hex File
4.4.4 Using a Batch File

5 MetaLink iceMASTER-COP8 DEBUG
MODULE
5.1 MetaLink iceMASTER-COP8 Debug Module
Overview
5.2 Emulation Characteristics of the Debug Module
5.3 PROM Programmer
6 MetaLink EVALUATION AND PROGRAMMING
UNIT
6.1 EPU Overview
6.2 EPU PROM Programmer

7 USING NeuFuz4

7.1 Installation Procedures

7.2 General Description

7.3 The NeuFuz™ Development Process

7.4 Neural Network Training
7.4.1 Membership Functions
7.4.2 Learning Rate and Learning Factor
7.4.3 Epsilon
7.4.4 Error Window

7.5 Fuzzy Rules and Membership Functions
Generation

7.6 Membership Functions Editing

7.7 Fuzzy Rules Verification and Optimization
7.7.1 Deletion Factor
7.7.2 Recall

7.8 COP8 Assembly Code Generation

7.9 Fuzzy Execution Module Creation

COP8 DEVELOPMENT SYSTEM A-1

iceMASTERT™ COP8/400

m Full featured in-circuit emulator:
MetalLink iceMASTER-400

m Low cost in-circuit emulator: MetaLink
iceMASTER Debug Module

m Assembler/Linker/Librarian: National
Semiconductor Assembler

m C Compiler: Bytecraft COP8C

LhiMetaing

ice MASTER |

TL/DD/12071-1

m Fuzzy Logic Development Software:
National Semiconductor NeuFuz

m Form Fit Function Emulators: National
Semiconductor FFF emulators

m Emulator/OTP Programming Support:
Certified PROM programmers

m Low Cost Evaluation and Programming
Unit

1 Introduction

1.1 MetaLink iceMASTER-400 Overview

The iceMASTER COP8/400 in-circuit emulator manu-
factured by Metalink Corporation and marketed by
National Semiconductor provides complete real-time
emulation support for all members of the COP8 family.
This stand-alone system is designed to provide maxi-
mum flexibility to the user through the interchangeable
probe cards to support the various configurations and
packages of the COP8 family. The interchangeable
probe card connects to a common base unit which is
linked with an IBM® PC® host through the RS-232
serial communications channel. Full assembly-level
symbolic debugging is supported.

NeuFuz™ and NeuFuz4™ are
1BM®, PC® are registerd of

i is a regi of Mit C
iceMASTER™ is a

of National i C
i i Machine C

of MetaLink Ci

A-2 COP8 DEVELOPMENT SYSTEM

1.2 MetaLink iceMASTER-400

A detailed overview of the features and functions of

the MetaLink iceMASTER software are provided in the

following sections. Below is a list of available probe-

cards and their ordering information. The minimum

system configuration required for COP8 emulation

consists of:

a. The MetalLink iceMASTER base unit with probe
card or MetaLink iceMASTER debug module.

b. National Semiconductor’'s COP8 assembler pack-
age or Bytecraft COP8 C compiler.

c. 1BM or compatible PC/AT®, 640k RAM, DOS 2.0 or
higher.

1 Introduction (Continued)
MetaLink iceMASTER-400 Emulator Base Unit Ordering Information

Part Number Description Current
Version

IM-COP8/400/11 | MetaLink base unit in-circuit emulator for all COP8 devices, Host Software;
symbolic debugger software and RS-232 serial interface cable, Ver. 3.3 Rev. 5,

with 110V @ 60 Hz Power Supply.

IM-COP8/400/2t | MetaLink base unit in-circuit emulator for all COP8 devices
symbolic debugger software and RS-232 serial interface cable,
with 220V @ 50 Hz Power Supply.

Model File Rev 3.050.

tThese parts include National's COP8 Assembler/Linker/Librarian Package (COP8-DEV-IBMA)

MetaLink iceMASTER-400 Probe Card Ordering Information (to be used with Base Unit)

Device Package \::::oal:aggee Probe Card
COP880C, 8780C 44 PLCC 4.5V-55V MHW-880C44D5PC
2.5V-6.0V MHW-880C44DWPC
COP880C, 8780C 40 DIP 4.5V-55V MHW-880C40D5PC
2.5V-6.0V MHW-880C40DWPC
COP881C, 8781C, 28 DIP 4.5V-55V MHW-880C28D5PC
840C, 820C 2.5V-6.0V MHW-880C28DWPC
COP842C, 822C 20 DIP 4.5V-55V MHW-880C20D5PC
8782C, 912C 2.5V-6.0V MHW-880C20DWPC
COP820CJ 28 DIP 4.5V-55V MHW-820CJ28D5PC
2.3V-6.0V MHW-820CJ28DWPC
COP822CJ 20 DIP 4.5V-55V MHW-820CJ20D5PC
2.3V-6.0V MHW-820CJ20DWPC
COP8640C, 8620C 28 DIP 4.5V-55V MHW-8640C28D5PC
2.5V-6.0V MHW-8460C28DWPC
COP8642C, 8622C 20 DIP 4.5V-55V MHW-8640C20D5PC
2.5V-6.0V MHW-8640C20DWPC
COP888CF 44 PLCC 4.5V-55V MHW-888CF44D5PC
2.5V-6.0V MHW-888CF44DWPC
COP888CF 40 DIP 4.5V-55V MHW-888CF40D5PC
2.5V-6.0V MHW-888CF40DWPGC
COP884CF 28 DIP 4.5V-55V MHW-884CF28D5PC
2.5V-6.0V MHW-884CF28DWPC
COP888CL 44 PLCC 4.5V-55V MHW-888CL44D5PC
2.5V-6.0V MHW-888CL44DWPC
COP888CL 40 DIP 4.5V-55V MHW-888CL40D5PC
2.3V-6.0V MHW-888CL40DWPC
COP884CL 28 DIP 4.5V-55V MHW-884CL28D5PC
2.3V-6.0V MHW-884CL28DWPC

COP8 DEVELOPMENT SYSTEM

A-3

1 Introduction (Continued)

MetaLink iceMASTER-400 Probe Card Ordering Information (Continued)

Device Package ‘::all:‘agg: Probe Card

COP888CG, 888CS 44 PLCC 4.5V-5.5V MHW-888CG44D5PC
2.5V-6.0V MHW-888CG44DWPC

COP888CG, 888CS, 40 DIP 4.5V-5.5V MHW-888CF40D5PC
888GG 2.5V-6.0V MHW-888CG40DWPC

COP884CG, 884CS 28 DIP 4.5V-5.5V MHW-884CG28D5PC
2.5V-6.0V MHW-884CG28DWPC

COP888EG 44 PLCC 4.5V-5.5V MHW-888EG44D5PC
2.5V-6.0V MHW-888EG44DWPC

COP888EG 40 DIP 4.5V-5.5V MHW-888EG40D5PC
2.3V-6.0V MHW-888EG40DWPC

COP884EG 28 DIP 4.5V-5.5V MHW-884EG28D5PC
2.3V-6.0V MHW-884EG28DWPC
COP888GW 68 PLCC 2.5V-6.0V MHW-888GW68PWPC

COP884BC 28 DIP 4.5V-5.5V MHW-884BC28D5PC

COPS888EK 44 PLCC 4.5V-5.5V MHW-888EK44D5PC
2.5V-6.0V MHW-888EK44DWPC

40 DIP 4.5V-5.5V MHW-888EK40D5PC

2.3V-6.0V MHW-888EK40DWPC

COP884EK 28 DIP 4.5V-5.5V MHW-884EK28D5PC
2.3V-6.0V MHW-884EK28DWPC

1.3 MetaLink iceMASTER Debug Module

The COP8 debug module is a low cost tool for design-
ing, debugging, emulating and programming COP8 mi-
crocontrollers. Four versions of the Debug Module are
available to support the most popular COP8 family
members in their different pin configurations. The host
for the Debug Module is a standard PC operating in a
DOS environment, and is driven by the same menu
driven user interface as the Metalink iceMASTER-
400. The Debug Module features an emulator with
connectors available for connecting to various target
boards. Additionally, the Debug Module offers the ca-
pability to program most of the EPROM versions of
COP8 microcontrollers.

The minimum system configuration required for COP8
emulation consists of:

a. The MetalLink iceMASTER Debug Module
b. Target connector cables

c. External 5V and 13V power supplies

d

. National Semiconductor’'s COP8 assembler pack-
age or Bytecraft COP8 C compiler

e. IBM or compatible PC, 640k RAM, DOS 2.0 or
higher

A4 COP8 DEVELOPMENT SYSTEM

1.4 MetaLink iceMASTER Evaluation and Programming
Unit (EPU)

The COP8 EPU is an evaluation tool designed for sim-
ulating the basic family instruction set and for pro-
gramming 40-DIP COP8780 or equivalent
OTP/EPROM parts. In addition there is a target con-
nector which reproduces the 1/0 of a COP880 device.
The host for the EPU is a standard PC operating in a
DOS environment and is driven by a simular user in-
terface as the iceMASTER-400 and debug modules.
The EPU offers an in circuit simulator with up to 4k
program memory, 128 bytes of RAM.

1 Introduction (Continued)

MetaLink iceMASTER Debug Module Ordering Information (Low Cost Development Tool)

Operating Current
Part Number Products Supported Voltage Version
DM-COP8/880CT COP880C/881C/882C, COP820/822C, 2.3V-6.0V Host Software:
COP840/842C, COP8780C/8781C/8782C Ver. 3.3 Rev. 5,
Model File Rev 3.050.
DM-COP8/820CJ+ COP820CJ/822CJ 2.3V-6.0V
DM-COP8/888CF 1 COP888CF/884CF, 2.3V-6.0V Firmware: Ver. 6.07.
COP888CL/884CL
DM-COP8/888EGT COP888CG/884CG, COP888CS/884CS, 2.3V-6.0V
COP888BEG/884EG

TThese parts include National’'s COP8 Assembler/Linker/Librarian Package (COP8-DEV-IBMA)

Target Connector Cables for Debug Module

Part Number

Description

DM-COP8/20D

20-Lead DIP Target Interface Cable

DM-COP8/28D

28-Lead DIP Target Interface Cable

DM-COP8/40D

40-Lead DIP Target Interface Cable

DM-COP8/44P

44-Lead PLCC Target Interface Cable

Adapter Kit for SO Packages for Use with Probe Cards and
Debug Module Target Connection Cable

Part Number Package
MHW-SO0IC20 20 SO
MHW-SO0IC28 28 SO

1.5 COP8 Assembler/Linker/Librarian Package

National Semiconductor offers a relocatable COP8
macro cross assembler. The assembler package in-
cludes a linker and librarian. It runs on industry stan-
dard compatible PCs in the DOS environment and
generates full symbolic debugging information in the
industry standard COFF (common object file format)
format, which can be directly used in the MetaLink
iceMASTER emulators. The Assembler package in-

cludeg utilitiag to view the svmbhalic information em-
ciuges utnities 10 view he symbpoiC information em

bedded in the COFF file, and to generate a HEX or LM
file for programming the COP8 parts.

The macro assembler generates relocatable object
files with or without embedded symbolics. The librari-
an can be used to generate and maintain object librar-
ies containing object files generated by the assem-
bler. The linker is used to generate absolute download
files from object files and object libraries.

Assembler/Linker/Librarian Ordering Information

Part Number Description Manual 0urr_ent
Version
COP8-DEV-IBMA COP8 Assembler/Linker/Librarian 424421632-001 Ver. 4.4,
for IBM PC/AT or compatible Released September '94

COP8 DEVELOPMENT SYSTEM A-5

1 Introduction (Continued)

1.6 COP8 C Compiler

National Semiconductor also offers the Bytecraft COP8C C-language compiler. This compiler features an expert
system based optimizer and supports all members of the COP8 family of microcontrollers.

C-Compiler Ordering Information

Part Number Description Manual Currgnt
Version
COP8C Bytecraft COP8C compiler with Bytecraft Ver. 1.0,
Manuals for the IBM PC/AT or COP8C Manual Released Oct. '93
compatible
1.7 Fuzzy Logic Software containing system input-output data. NeuFuz learns

National Semiconductor offers NeuFuz, an automated the control surface represented by this data and auto-
development tool for generating fuzzy logic assembly matically generates a fuzzy logic assembly language
code. NeuFuz runs on an IBM PC or equivalent on implementation. NeuFuz permits the user to simulate
Microsoft Windows®. The input to NeuFuz is a text file and fine tune the Fuzzy Logic control surface on the

PC before it is plugged into the embedded processors.

Fuzzy Logic Software Ordering Information

Part Number Description Manual

NF2-C8A-KITT | NeuFuz Learning Kit, with up to 2 analog inputs and 1 analog output. 42442645-001
Generates COP8 assembly code. or NF4-MAN

NF4-C8AT NeuFuz4 software, with up to 4 analog inputs and 1 analog output. 42442645-001
Generates COP8 assembly code. or NF4-MAN

NF4-C8A-SYSt | NeuFuz4 software, with up to 4 analog inputs and 1 analog output. 42442645-001
Generates COP8 assembly code. MetaLink COP8 Debug Module. It also or NF4-MAN
includes Customer training and Application support.

t These parts include National’'s COP8 Assembler/Linker/Librarian Package (COP8-DEV-IBMA)

A-6 COP8 DEVELOPMENT SYSTEM

1 Introduction (Continued)

1.8 Form Fit Function Emulator Support

National Semiconductor offers Form Fit Function (FFF) emulators for the basic and all the feature family mem-
bers. The following table is the selection guide of emulators for the basic COP8 family members.

Form Fit Function Emulator Ordering Information (Basic Family)

Device Number Package Description Emulates
COP8780CV 44 PLCC One Time COP880C
Programmable (OTP)

COP8780CEL 44 LDCC UV Erasable COP880C
COP8780CN 40 DIP oTP COP880C
COP8780CJ 40 DIP UV Erasable COP880C
COP8781CN 28 DIP OTP COP881C,

COP840C, COP820C
COP8781CJ 28 DIP UV Erasable COP881C,

COP840C, COP820C
COP8781CWM 20 SO OTP COP881C,

COP840C, COP820C
COP8782CN 20 DIP OoTP COP842C, COP822C, COP912C
COP8782CJ 20 DIP UV Erasable COP842C, COP822C, COP912C
COP8782CWM 20 SO oTP COP8442C, COP822C, COP912C
COP8640CMHD 28 DIP Hybrid, UV Erasable COP8640C, COP8620C
COP8642CMHD 20 DIP Hybrid, UV Erasable COP8642C, COP8622C
COP8720CJN 28 DIP oTP COP820CJ
COP8720CJWM 28 SO oTP COP820CJ
COP8722CJWM 20 SO oTP CcoP822CJ

COP8 DEVELOPMENT SYSTEM

A-7

1 Introduction (Continued)

Form Fit Function Emulator Ordering Information (Feature Family)

Device Number Package Description Emulates
COP8788CLN-X 40 DIP oTP COP888CL
COP8788CLN-R
COP888CLV-X 44 PLCC oTP COoP888CL
COP888CLV-R
COP884CLN-X 28 DIP oTP COP884CL
COP884CLN-R
COP884CLWM-X 28 SO oTP COP884CL
COP884CLWM-R
COP888CFN-X 40DIP OTP COP888CF
COP888CFN-R
COP888CFV-X 44 PLCC OoTP COP888CF
COP888CFV-R
COP884CFN-X 28 DIP oTP COP884CF
COP884CFN-R
COP884CFWM-X 28 SO OTP COP884CF
COP884CFWM-R
COP88BEGN-X 40 DIP OoTP COPB8B88EG, 888CG,
COP888BEGN-R 888CS
COPS888EGV-X i 44 PLCC OTP COPS8S88EG, 888CG,
COP888EGV-R 888CS
COP884EGN-X 28 DIP oTP COPS8B4EG, 884CG,
COP884EGN-R 884CS
COP884EGWM-X 28 SO oTP COP8B84EG,884CG,
COP884EGWM-R 884CS

Note: X = Crystal oscillator option
R = R/C osciiiator option

A-8 COP8 DEVELOPMENT SYSTEM

1 Introduction (Continued)
1.9 COP8 Programming Support

The following programmers are certified for programming the One Time Programmable (OTP) and Form Fit

Function (FFF) Emulator versions of COPS8:

EPROM Programmer Information

Manufacter U. S. Phone Europe Phone Asia Phone
and Product Number Number Number
MetalLink (602) 926-0797 Germany: Hong Kong:
Debug Module +49-8141-1030 +852-737-1800
Xeltek-Superpro (408) 745 7974 Germany: Singapore:
+49-2041-684758 +65-276-6433
BP Microsystems- (800) 225-2102 Germany: Hong Kong:
EP-1140 +49-89-857-66-67 +852-388-0629
Data I/0O-Unisite; (800) 322-8246 Europe: Japan:
-System 29, +31-20-622866 +33-432-6991
-System 39 Germany:
+49-89-85-8020
Abcom- COP8 Europe:
Programmer +89-808707
System General (408)263-6667 Switzerland: Taiwan Taipei:
Turpro-1-FX; +31-921-7844 +2-9173005
-APRO

2.0 iceMASTER-400 Features

2.1 MetaLink iceMASTER Feature Overview

The MetaLink iceMASTER COP8 Model 400 In-Circuit
Emulator for the COP8 family of microcontrollers fea-
tures high-performance operation, ease of use, and an
extremely flexible user-interface for maximum produc-
tivity. Interchangeable probe cards, which connect to
the standard common base, support the various con-
figurations and packages of the COP8 family.

The iceMASTER provides real time, full speed emula-
tion up to 10 MHz, 32 kBytes of emulation memory
and 4k frames of trace buffer memory The user may
define as many as 32k trace and break triggers which
can be enabled, disabled, set or cleared. They can be
simple triggers based on code or address ranges or
complex triggers based on code address, direct ad-
dress, opcode value, opcode class or immediate oper-
and. Complex breakpoints can be ANDed and ORed
together. Trace information consists of address bus
values, opcodes and user selectable probe clips
status (external event lines). The trace buffer can be
viewed as raw hex or as disassembled instructions.
The probe clip bit values can be displayed in binary
hex or digital waveform formats.

During single-step operation the dynamically annotat-
ed code feature displays the contents of all accessed

(read and write) memory locations and registers, as
well as flow-of-control direction change markers next
to each instruction executed.

The iceMASTER's performance analyzer offers a res-
olution of better than 6 us. The user can easily moni-
tor the time spent executing specific portions of code
and find “hot spots” or “dead code”. Up to 15 inde-
pendent memory areas based on code address or la-
bel ranges can be defined. Analysis results can be
viewed in bargraph format or as actual frequency
count.

Emulator memory operations for program memory in-
clude single line assembler, disassembler, view,
change and write to file. Data memory operations in-
clude fill, move, compare, dump to file, examine and
modify. The contents of any memory space can be
directly viewed and modified from the corresponding
window.

The iceMASTER comes with an easy to use win-
dowed interface. Each window can be sized, highlight-
ed, color-controlled, added, or removed completely
Commands can be accessed via pull-down-menus
and/or redefineable hot keys. A context sensitive hy-
pertext/hyperlinked on-line help system explains
clearly the options the user has from within any win-
dow.

COP8 DEVELOPMENT SYSTEM A-9

2 iceMASTER-400 Features (Continued)

The iceMASTER connects easily to a PC via the standard COMM port and its 115.2 kBaud serial link keeps typical
program download time to under 3 seconds.
For ordering information on the MetaLink iceMASTER system refer to the COP8 device datasheets or you may
contact Metalink directly under the following USA numbers:

Phone: (602) 926-0797

FAX: (602) 926-1198

Sonfigure UEEEY un TEsplag/ﬁltep i&::’ Source/Symbols zreagéggnga (H?AS)——
R .'stg::ax%! ¥ alf%g {énﬁfoc &’g ?‘gﬁ:_{;g':?%iél.:m’g ':%‘;ﬂia?f%}gé’%géﬁrgni; d
FIog T TR R TR R TR R TR TR
ORTEh . GF PORIS.. T IiB §§ EoRTce 'EE FORYL -89 bokich e BORTCC 88
_!ir_tl_.ul'.gg_ }%mu.éiisg Fi!AH - RERNT 38 ISDTRL-: ﬂ----.igg firiLo- -2
g0 8 Fdo..o:.88 Fﬁ::::::ss Bo: .88 %8. .. 82 E7..:..:88 §%...::.88
TFEEFELEE ii '28°82 32 22 92 29 g2 THEEE

8438 0% 89 83 8¢ 28 2 35 48 4% 58 8% 28 28 92 g% 22 £3 98 20 g3 92 88 45 &8

- Soupce File: deno cg i-g——

o h. D B B 4F e ET

3887 BY2S 1 T80 raniDCIcatiidisd

SACE | !lel’l.w M& SP=2F ta!-92t—0021

A, axe

o e Rt

§ gE r{g st et

6 Gl SZ FL

s 8 fhe e

9 P
| assCt: @ Time: e;ﬁ;uSStatnn rea%—point SP:2F l9 |

»Cnt:1 Resets: 0 Trace:Partial Read:1880%Z Trig:End rk“ddr ?
[[®®DC DIRECT unknown @oasn = FE Hatch]

|702F 89 60 00 PO B 6P 00 PO 88 60 ‘; 8‘ 0P 90 99 09 06 P8 B8P 88 B0 sasp 2;0

File operations
u‘:’ mm‘ W e
O gl B Nrewl i AGERE O nilrh
? dRewet R 5er¥ £ oo Fwo i (S teping % {‘
TL/DD/12071-2

Each window of the main screen can be sized, highlighted, color-controlled, positioned, added, or removed
completely by using the “Configure | Window” menu. Commands can be accessed via pull-down-menus and/or
redefineable hot keys. A context sensitive hypertext/hyperlinked on-line help system explains clearly the options
the user has from within any window.

The main screen in this example has been configured to show the register, internal RAM data, source, status,
watch and stack windows. A more detailed description of each of these windows will follow in this chapter.

Values can be changed directly within the window (with the exception of the source window).
A particular window can be selected by repeatedly pressing the TAB key or <shift>TAB keys.

e B o |

J

Curaren b Uu&l;;mt"gvftE?gg“Eiﬂuc 33 ﬁ R1LO - Eg§

18 T5CHIBE:3 e;zc% R [e L B TIlllle8
:gg %Cﬂ%gL @ ZE:Dﬁ a ———————snternsl Data #1

8z IZCNIE 8 88 ¢ e 88 T °

R R Elr il B :

e 00 60 00 96 V0 09 ']

+00498 00 00 90 ©0 90 20 09 ©

TL/DD/12071-3

A-10 COP8 DEVELOPMENT SYSTEM

2 iceMASTER-400 Features (Continued)

The register window displays all of the dedicated registers of a specific—in this case the COP888CG—microcon-
troller. If the window is selected by pressing the TAB key, the user can select a particular register with the cursor
key. If a register contains specific flags, these flags, their name and bit location are automatically displayed in
another pop-up window, when this register is selected with the cursor keys.

A register value can be changed by selecting the desired register with the cursor keys and then typing the new
value in on the keyboard. Doing this will automatically pop up an edit window as soon as the first number key on
the keyboard is pressed.

Note: Hex numbers starting with a letter must always be preceded by a “0” in order to distinguish those numbers from symbol names.

Each window can be scrolled once it is selected by using the cursor or page-up/page-down keys.

In the upper right corner of the window border the currently emulated chip is shown.

2.2.2 Internal RAM Data Window

T 38 28 B 18 oo 28 82 88 8 gg gs T
i 4% 98 93 35 23 53 33 83 g8 o¢
-) V TL/DD/12071-4
T E > 5338 38 13 98 88 83 7
86 38 85 80 93 89 82 28 83 28

TL/DD/12071-5
Up to five different internal RAM windows can be displayed, each showing a different address range of RAM. In
the window configuration the user can select between Hex only, ASCII only or Hex and ASCIl combined display
mode. The window may be scrolled when selected, so it is possible to scroll to any desired RAM location of the
on-chip RAM.
When the RAM window is selected by pressing the TAB key, moving to a certain RAM location with the cursor
keys automatically pops up a small window showing the current RAM address selected.
A RAM location can be changed by selecting the desired location with the cursor keys and then typing the new
value in on the keyboard. Doing this will automatically pop up an edit window as soon as the first number key on
the keyboard is pressed.
Note: Hex numbers starting with a letter must always be preceded by a “0” in order to distinguish those numbers from symbol names.

To modify a whole range of RAM the fill and modify functions of the “Display/Alter| RAM” menu can be used.

COP8 DEVELOPMENT SYSTEM A-11

2 iceMASTER-400 Features (Continued)

2.2.3 Source Window
S o Fi . —
S 1110 £R it s spoar «2ociiladt
888D 9681 HOR ﬁ: X’ 81
iR |)
8819 B8 NOP

TL/DD/!Z(;71 -6
We have the option to display the source in a Higher Level Language, Disassembled Opcode/Operands, or a
combination of both. The source window displays from left to right the following information:

Program memory address, COP8 Opcode, symbolic labels, disassembled Opcode (assembler mnemonics) and
annotated code information (in the case of single-step or breakpoint).

A highlighted bar marks the location of the Program counter (i.e. the highlighted instruction is the next instruction
to be executed, all previous displayed instructions have already been executed).

The annotated code displays the contents of all accessed (read and write) memory locations and registers, as
well as flow-of-control direction change markers next to each instruction executed. The information shown refers
to the memory location status BEFORE the instruction is executed. In the above shown screen the first instruction
loads the Stackpointer with the value of 02F Hex. The Stackpointer is memory mapped at RAM address OFD Hex.
So the annotated code together with the instruction next to it shows that 02F was written to RAM address OFD
(the Stackpointer), which prior to that had the value of 06F.

The source window can be scrolled but no changes can be made within the source window. To change the
program or to view a larger part of the disassembled code the “Display/Alter|Program memory” menu can be
used.

In the upper right corner of the window border the filename of the currently loaded program file is displayed.
The source window permits the user to set and unset Breakpoints, switch between source modules, run until a
particular label or address, change the source viewing mode (between Higher Level Language, Code and Mixed),
search for a particular label or address, and assemble/disassemble code.

2.2.4 Status Window

[FEEESTT Bi%io.0 | treeerresiiss BeabtiBRirRoToiBia " Brunale:8887 |

TL/DD/12071-7

The Status window shows information about the emulators current status, Pass counter, Repetition counter,
number of resets, elapsed time, trace and breakpoint information and the current values of Stackpointer and
Program counter.

The window is updated with every breakpoint, the elapsed time field is updated approximately every second and
shows the total elapsed time since emulation has been started (after reset or a breakpoint). Hence when single
stepping the time field displays the time used for the executed instruction. A hardware timer, located in the base
unit of the emulator, is used for this and has an absolute error of 1 us, so the times displayed for single
instructions during single step might not always be accurate. When the timer is used for timing code sections, the
accuracy of the timing is within 1 pus.

The Pass counter, Repetition counter, Stackpointer and Program counter can be modified within the status
window in the same way values in the RAM and Register windows are changed.

2.2.5 Watch/Stack Window

Match
| eeDC DIRECT unknown ekl = FE I—ﬁ]
886F

YR e — SP:i2F—
IC.LE!;I 66 09 80 00 B0 OO 6D 00 08 88 Wﬂ' 66 88 88 B8 ::i FF FF FF FF FF FF FF i

TL/DD/12071-8

A-12 COP8 DEVELOPMENT SYSTEM

2 iceMASTER-400 Features (Continued)

The Watch window allows the user to add memory locations of special interest for monitoring purposes during
debugging. In the example shown, the D-Port has been added to the watch window and the information displayed
shows:

The memory address, the symbol type (“‘direct” stands for a RAM/register address, whereas immediate would
stand for an immediate value, which could also be added to the watch window, even though it would not make
much sense), symbol name and symbol value (in the case of RAM/register the symbol value is the contents of
RAM/register, in the case of an immediate the symbol value is the immediate itself).

Values in the Watch window can be modified in the same way values in the RAM and Register windows are
changed.

The Stack window is simply a special RAM window with the actual stackpointer value shown in the upper right
corner of the window border. It can be manipulated (scrolled, resized, moved, altered) in the same way as a RAM
window.

2.3 Breakpoints/Trace Triggers

= = = Break-Points, Pass—Counts & Trace—-On/0ff
Idd Henove Edit e x sunbolic ecode_Class ioad Salle
imple
ADDRESS RANGE
CODE BIREGT I nﬁ%ﬂf%% E BIT OPCODE OPCODRE
ADDRESS & ADDRESS & OPERAND & NUMBER & UALUE & CLASS

CBREAX 2804-8689 - - - BD- ~

|

Ctrl-R:Resize Ctrl-U:Move Tab,Shift-Tab:Select

TL/DD/12071-9

Breakpoints and Trace triggers can be defined via the “Break/Trace|Set” menu, which pops up another window,
and can range from simple triggers based on code address to very complex triggers. A simple breakpoint is set by
selecting “Add|Cbreak” from the menu bar of the Breakpoint window.

A faster way of defining a simple breakpoint is by pressing the assigned hot key combination (Shift-F2 in the
configuration shown in the example mainscreen figure).

Breakpoints can also be completly removed or temporarily disabled via the “Break/Trace menu”.

COP8 DEVELOPMENT SYSTEM A-13

2 iceMASTER-400 Features (Continued)
2.4 Assembler/Disassembler

Wonfigure uwile wiun olEYNFYY ilisc dource/Symbols ireak/Trace ilelp
= : ssembler —
Misassemble dssemble #abel-synch fpite Fil a s hE
Addr Code Labe 1 Instruction s%ar%: TH vileidens of.s
e) RESET: T A ———
3351 FEEE BESEL g A
? gg; BD].)(“ZGB OUTER: RBIT g%l’g‘lk;l' ﬂnﬂ
g INNER: R
8863 spsh 1* arh8erp
§§§ %% b 4
g §. Or
12 EEM” Boir ;.og
1 sz Kl
#1817 F1 §g g
1R b=
1A 821 !}SR SP{N
l881% £8%1 ¥, Slikx
oa31 ness Lo Fo. nx 04
" 3 gg SEifLe: §gsz Fe’
24 g E SPINLP
B82S e RET
0626 FF ENDMEM: J ENDNEN
8827 FE J ¥ 8ez7
pA28 F o %' %8
i ¥ bR
ggn EE 3% g gazn
| C FF JP *882C
§§D 3 JP ¥’ 8820
E JP H’ 862E
B2F F JP 8’ 802F
BA38 FF JP X’ 2930
g 1 F] P ¥’ 8031
2 @ NIR
3 8 NIR
a34 g NIR
8835 NTR
$+: Inc/PDec Start Label-Synch=0f{=—

Assenbly Mod . N R

< . o ytkd d il REATE ATLTYEER N 5 x el Wt e
TL/DD/12071-10

The iceMASTER's built in assembler/disassembler can be accessed via the Display/Alter menu. The user can

view different areas of disassembled program code by specifying the start address or can make changes to the

loaded code and save them to a file.

Note: Make sure that the “label-sync” feature is turned off when viewing program code, otherwise the disassembler might not disassemble correctly.

A-14 COP8 DEVELOPMENT SYSTEM

2 iceMASTER-400 Features (Continued)

2.5 Trace View

donfigure Jile vawn slisplay/Alter iisc Source/Symbols tiulreak/Trace jelp
o K Idrobes ﬂearcgleu Tﬁ?ie —
—Mode: Coiﬂ Trace Read: 188x
Frame Code R
Number dd» Label C_y Instruction Probes
- 3% B 3 K= B RRFNAT 498118
- 5§ 18, bl g3e13e
z 2% 2 PO Hall 43 Sigﬁ
S i e b e iteas
- & E SpiNip: 3 Dksz { $111119
- 65 2 3 SPINLP 811811
> sg 3 SFINLP: 3 % e llﬁlial
- & 3 SPINLP: 3 DRsz ¥ 914998
- a 3 SPINLP 3 DRsz Fo. -F jesais
- 43 g8ca ! izjp = SPINLP éiigaiz

™ a1 3 LE A,Ponsn a!ngti
- E] HOR h, 1’ el e8ieiel
- 6 1 3K A, PORTD kS H
- 3 3 iLp B.ax 08 11T
- § fe 81 ekl 0 1410t
- B R 13 b G
- '3 8889 INNER: § 3SR SPIN 8931218
- L6 @21 SPIN: 3 LD Fo, #x’ a4 i881ie1
- 13 823 SPINLP: 3 DRSZ ¥8 1181181
= ' 8853 spInLP: 3 DRsz FaNLP ==1§1=
- a4 @824 i 3 JP $PInLe $o350807
- & ggEy sewe S i § SRR

ize Ctrl-V:Move
CO tgpg As dg;q

ssembled instpuctions
i 22 3 Hte B

The Trace window occupies the whole screen and is brought up when the user selects Break/Trace|View from
the menu bar. By default the trace buffer captures data in real-time whenever a program is run. It is organized as a
circular buffer, so whenever the buffer is full, it will wrap around and start overwriting the oldest information.
The user can select among various display modes. Two examples are shown in this paragraph. Opcodes can be
displayed in “Raw” or in “Code” format. Raw format lists each single instruction cycle as a separate entry,
whereas Code format combines instruction cycles together to form one assembler mnemonic per entry line.
Apart from instruction cycles, address and opcode data, the Trace buffer also captures the status of eight external
probe clips (external event lines). These are clips connected to the iceMASTER probe card, which can be
connected to any type of TTL compatible signal. The display mode for the probe clips can be toggled between
binary, hex and logic analyzer format and thus provide a nice little logic analyzer with a 1 us resolution.

COP8 DEVELOPMENT SYSTEM A-15

2 iceMASTER-400 Features (Continued)

sonfigure :jile iaan ol splayfﬁlttﬁ _ﬂlgc jnurce/Sgnbols ;}reak/l‘race felp
sau Sode 13 h Bvamch E) 1to
ode: R

Fra

Number Address Data

- 35 i1 SF D

- §4 ig BD* IFBIT

= 3% %3 "

- B 8 HRbh

= g iz Fix JP

- 22 18 CZ

- 2 =9 3

- 3 9 #* JSR

- 2 gh

- % BA

. 21 Do
—— 3 g B

- 38 g% 28 Drsz

- %4 4 SE

- i% %2 ;g* JP

- 1 23 8

- i8 23 <o

- 2 23 <Oé» DRSZ

- 8 29 FE

z 4 23 FEx Jp

> 8 EES SE

- 4 23 ga

- 3 23 E. DRSZ

- 2 24

- % 24 fE ; o

249 Ex JP €< <L Q

=Twigger: End=———— Ctyxl-R:R estze- Ctnl v:

Toggle Px-ohes‘ column between bl_n e di |.I:al uavel‘ox‘h Jls nodes
c l‘ ‘3 6
s tﬂk] E M l

TL/DD/12071-12

2.6 Performance Analyzer

Sonfigure @ile Bumn Misplfy/altar ise auurea/Sunboé speak/Trace ielp
h Re em! et

Hi g ution ornance ﬁnalssls up =
n sjftatistics Lun Quick-setup ilisc 13di selete ile
Ilp o [3 : 9PAA-— S Accumulate Stats: Off Bins: 14
p7aa0 §Pan: 82988833 . Stats: Of
up — Capture nge Order
Tuwe Bin eiazye pﬁescnl%tgon
N-E 3 bytes
3 Batss
utoc

ot o ettt o ot o Pt Bk
MDD I

Lad

[]

"]

HWNHEORNNTLRWN -
a1
]
5 DI (0 b sk b (DD ©
" U D LA EEOOUINY

NR.28.08,82.0,080,28.2.8
b b b -

X
-

AT
) oo

Ctrl-l:kesize Ctrl—-V:Move

8
R mmw. £
EP(= i Ph
L8714 ¢TI N ,,_"ﬁ = Nolineilggtapingid 3} fte) %

TL/DD/12071-13

A-16 COP8 DEVELOPMENT SYSTEM

2 iceMASTER-400 Features (Continued)

The iceMASTER’s performance analyzer is accessed via the Misc menu and provides also a ‘“quick setup”
feature, which distributes the sample bins automatically over the entire program range, as shown in above
example. Apart from that the user can monitor specific ranges of the program by distributing the sample points

manually.
donfigure wile ujun wisplau/dlte yisc j)umce/S'ynbols iireak/Trace jjelp
= Hiyh Res olutxon erfunnance Anal
Raw Symbolic ounts xpand Misses x-l. te Help
Counts: OFF K d:N.A_. H OFF PC: 9809
Sumbolic Bins:i6 Timet oo’ 231 ff%us lsamples 50,399"
4 RESET EM{ <
Bin Name/) Peroenfases Code Labels_in Range i
fiddress . Bin N . This Cunu 36
Range Bin# Type Description Bin ative 848260498269 4826048268482680
;—0002 1 N-Eql 2 bste:g}%sg{ 6.0 9.8 | 1 ! | I !
F
3-8085 2 N-Egql 3 te 8.6% 0.6
o8 5 o ""t *OUTER " w ! ! ! ! !
i e e T
C-8688E S N-Egql 2 bytes 3. 16.9
F-8811 & N-Eql 3 gstes 6. %3-2
2-8814 7 N-Eql 3 bytes 6. %* 2.6
J-8817 g N-Egl 3 BytES 10.7% 48.3
—891“ N-Eal 2 bytes 1.4% 1&.7
SHE o8 R DR §:4: 48
1F ®ENDPRG "
2%—0921 12 N-Eal 2 buyte PIN S5.7% 48.7 WA 1 1 | 1 1
-8ae ~Egl 2 byt 22.8% 71. TR
4-8 a: :.: : qu 2 b:t:;splul‘y 28 510: z W I I I I
G-?g F is Hisg (Disabled) z 8.6 | I I I I
6 *ENDMEM

sciBreak Emulation

Toggle tosfrom additional Jnfornatzon for each range

in each bin

TL/DD/12071-14

The performance analyzer’s display mode can be switched between a bargraph display or a display of actual
counts. The user can select to include symbol label information for easier monitoring.

COP8 DEVELOPMENT SYSTEM A-17

2 iceMASTER-400 Features (Continued)

gonfisure sile s sipelasctlies, jiop,,dourcefSupbels sesallrace Jele
r nc
Raw Symbolic Counts Expana .a“ SSeS Y Wri te Help
ounts:ON _ Expand:N.A., Misses:OFF H ;0021
"gy:gofio Bins:16 Time: RESE‘!z,a gﬁgﬁgs 1Sanple£? 2 58,187
Bin Name/ . ;arcentages Code Labels in Range
Address R Bin This Cumu
Range Bin# Ture DRescription Bin ative Sample Counts for Range
29002 1 N-Egl 3 byt B.0% .
Y efgﬁ% 8.8 8.8 1
—08885 2 N-Eql 3 bhytes 8.6% ©8.6 368
HOUTER
6—-0888 3 N-Eql 3 bytes 8.5% 1.1 276
\ -8008 4 N-Eql 3 hst'i[ﬂNER 12.6% 13.7 7,399
-808E e 1 3 butes 3.2% 16.9 » 84
—ngl 2 — 21 3 kgtes 6.%* 23. &,673
L2-8614 2 N-Eql 3 buytes 6.3% 29, 3,2%0
L D3-80817 8 N-E« g buytes 18.7n . 6, 3
PRI R HEEH 2
: :§—°.1¥ i1 NCETD 3 ﬁte:mnr“ 8:8X 233 254
g-eoax 12 N-Eql 2 hgte*srln 5.7% 48.7 3,316
%—0023 13 N-Eql 2 hgte:sPlNLP 22.8» 721.5 13,275
9-8823 14 N-Eql 2_but .3%108.80 »
g-ggrr 15 Mi=s (mgaifﬁﬁ) 28.3™°%:8 16.378
#ENDMEM
Se ! k_Emulatio

Display Mode:

e r
bar graph lines + a?‘ fabels (global and/or local) in »ange

3 iceMASTER Software Installation

3.1 Installation Procedures

The MetaLink iceMASTER system comes with two

disks of software, one contains the host software for

the iceMASTER base unit and the other the probe

card software. The software is installed by inserting

the disk label “insert 1st” into drive D: and typing:
D: install D: c:\path

The installation process is menu driven and should

therefore be self-explanatory.

The same procedure is repeated for the second disk.

When installing the probe card software the user has

to specify whether it is an iceMASTER-400 or Debug

Module, which chip is to be emulated and the installa-

A-18 COP8 DEVELOPMENT SYSTEM

TL/DD/12071-15

tion program then creates automatically the appropri-
ate help, help index and model files for that chip. If a
debug module is specified, then the PROM program-
mer menu items are activated in the iceMASTER soft-
ware.

3.2 Emulating Different COP8 Family Members

The model file created by the installation program de-
fines chip specific features, such as ROM size, RAM
size, special function registers, etc. for the user speci-
fied chip. If the user wants to emulate a different
COPS8 family member the model and help files for this
chip have to be created. Rather than doing a new in-
stallation of the software the MF_GEN utility program
provided with the iceMASTER software can be used.
Executing that program will present a menu to the
user where the desired COP8 device can be selected.

4 Creating an Emulator Download File

4.1 Emulator Download File Formats

To make full use of the iceMASTER'’s symbolic debug
capabilities the user has to create a Common Object
File Format (COFF), or Binary Code File (COD), or
Symbolic Hex File (SHF). These files have symbolic
debug information embedded in them. The steps that
have to be performed to generate the COFF/COD/
SHF are outlined in this chapter.

4.2 Generating A Common Object File Format File (COFF)

4.2.1 Running the Assembler/Linker (Ver. 4.0 or later)
The MetalLink system uses the National Semiconduc-
tor's COP8 assembler/linker/librarian (Version 4.0 or
later) to generate the COFF file. The procedure to cre-
ate the COFF file with the symbolic information and
source lines embedded in the COFF file is accom-
plished by runnning the assembler and linker with the
following parameters:

ASMCOP. filename /SYMBOLDEBUG /COMM

/LOCALSYMBOLS /TABLESYMBOLS /L
The default filename extension is .ASM and does not
need to be specified. The assembler generates a relo-
catable object file with extension .OBJ. The option
/SYMBOLDEBUG includes symbolic debugging infor-
mation in the object file. The option /COMM includes
source lines as comments in the object file. The op-
tions /LOCALSYMBOLS and /TABLESYMBOLS in-
cludes the symbol table in the object file with all the
local symbols also.

LNCOP filename /FORMAT = COF /T
The default filename extension for the linker is .OBJ
and does not need to be specified.The linker gener-
ates a COFF output file with default extension .COF
when used with the above options. The option /T in-
cludes the symbol table.

4.3 Generating A Binary Code File (COD) File
The MetalLink system also uses the Bytecraft COP8C
compiler to generate the COD file, which contains em-
bedded symbolic debugging information.
4.3.1 Running the Bytecraft COP8C Compiler
A C application program written for COP8C compiler
can be compiled using the COP8C compiler using the
following command line options:

COP8C filename +da +1 +x
The default filename extension is .C and does not
need to be specified. The option +da produces an
ASCII format hex dump file, +1 generates a listing file
and +x generates the cross reference file. By default
a code file is generated with name “filename.cod”.
The COD file generated can be directly downloaded
into the MetaLink iceMASTER or Debug Module.

4.4 Generating A Symbolic Hex File (SHF)

4.4.1 Running the Absolute Assembler (Rev. E or earlier)

The MetaLink system uses National Semiconductor’s
COP8 assembler (Rev. E) to create a symbol file, list-
ing file and object code file. However, the current ver-
sion of the assembler does not distinguish between
RAM/register symbols and immediate/bit symbols,
but distinguishes only between label symbols and all
other type of symbols. Therefore the user has to sup-
ply the missing information to the MetaL.ink system by
means of an exception file which is handled in more
detail later on in this chapter.
To create the necessary output files the assembler is
called with the following parameters:

ASM800 filename /l=filename.lst /S
The default filename extension is .MAC and doesn’t
need to be specified.
The /I switch creates a listing file with the file exten-
sion .LST, the /s switch creates a symbol file. The
object file is created automatically with the extension
.LM (NSC Hex format).
In the next step the .LM object file has to be converted
into an Intel Hex file for use with the MetaLink system.
This is done with the LMHEX utility provided with the
assembler:

LMHEX filename
This will create an Intel Hex file with the extension
.HEX

4.4.2 Creating an Exception File
Once the program has been successfully assembled,
the user has to create an exception file. The exception
file contains all symbols that are not address labels
and has the following format:

symbolnameidentifier
where identifier is either 2, 5 or 9, with:

2 = RAM/register address,

5 = immediate or bit value,

9 = don’t care.
Example exception file:

PORTD 2

PORTGD 2

GIE 5

JUNK 9

Note: To get the exception file definition for all COP8 standard register
and bit symbol names the user should copy the DEMO__C8.EXC
file which comes with the iceMASTER software to a file called
filename.exc of the assembled program and then edit and add
the missing new symbol names to that file.

Once this exception file is created, a Symbolic Hex
File can be created.

I

COP8 DEVELOPMENT SYSTEM A-19

4 Creating an Emulator Download File (Continued)

4.4.3 Creating a Symbolic HEX File
A Symbolic Hex File (SHF) is created with the
MetaLink utility program MKSHF, which takes the list-
ing, hex and exception files as input and creates a
symbolic hex file (SHF extension) as output. The syn-
tax is:
MKSHF filename.lst filename.hex
filename.exc filename.shf
The symbolic hex file is downloaded to the MetalLink
system and contains all necessary program and sym-
bol information.

echo off
rem syntax: make filename [path]

4.4.4 Using a Batch File

A Batch file can be used to perform most of the steps
(apart from creating the exception file) described in
this chapter automatically This batch file can also be
used to do the initial assembly of the program as the
LMHEX and MK__SHF utility programs will simply fail
if the necessary input files are not present. Following
is the listing of the MAKE.BAT file:

rem specification of path is optional, no filename-extension

rem is entered on the command line
rem change path
cd %2

rem assemble file (default file-extension = .MAC)

rem if you want to use a different extension, you have to
rem insert it after the "asm800 %1", e.g "asm800 %l.ASM"
rem create printfile: FILENAME .LST and symbol file

rem FILENAME: SY)
asm800 %1 /1= %l.lst /s

rem convert .LM file to Intel Hex format .HEX

lmhex %1

rem make symbolic hex file
rem input files are:

rem FILENAME.SYM ;symbol file

rem FILENAME.EXC ;exception file, see readme files for

rem how to create an exeption file

rem FILENAME.HEX ;object file in Intel Hex format

rem output file is:

rem FILENAME.SHF ;symbolic hex file which is downloaded to

rem MetaLink system
mkshf %l.sym %l.exc %l.hex %l.shf
echo on

A-20 COP8 DEVELOPMENT SYSTEM

5 MetaLink iceMASTER-COPS8 Debug
Module

5.1 MetalLink iceMASTER-COP8 Debug Module

Overview
The MetaLink iceMASTER-COP8 Debug Module has
most of the salient features of the iceMASTER-400
and in addition has a COP8 PROM programmer. Itis a
tool for designing, debugging and evaluating COP8
Microcontroller Unit (MCU) devices. This provides all
of the essential MCU timing, 170 circuitry and there-
fore simplifies the evaluation of the prototype hard-
ware/software product.
The Debug Module is controlled by an IBM PC (or
compatible) running MS-DOS communicating over a
serial port at 9600 baud. The Debug Module uses the
same menu driven user interface as the Metal.ink ice-
MASTER-400 (Refer to Section 2 for more details).

The Debug Module can be connected to a target sys-
tem in place of the microcontroller (using an optional
target interface cable) or operated independently in
the stand alone mode. Stand alone mode allows you
to emulate hardware and/or execute code without a
target system (provided no interaction with external
devices is needed).

Hardware designers can use the Debug Module to de-
velop and debug their designs. All available features
of a given device are accessible interactively, as well
as through the application programs. Software design-
ers have complete emulation capability as well. The
Debug Module will execute the code just like the real
part because it uses a real part for emulation.

5.2 Emulation Characteristics Of The Debug Module

The Debug Module utilizes the INTR instruction to im-
plement software breakpoints. If your application code
contains any INTR instructions, they will never be exe-
cuted. The debug module behaves exactly as though
a breakpoint occurred when it passes through such
locations. In the iceMASTER-400 breakpoints are im-
plemented in hardware and if the application were to
contain INTR instructions, they will not be treated as
breakpoints.

When a breakpoint is set on an instruction which
could be potentially skipped, the emulation will break
only when the instruction is actually executed. Emula-
tion will never break when the instruction is skipped.
When a breakpoint is set on an instruction which
could be potentially skipped and that instruction is
skipped during emulation, the address and data val-
ues captured in the trace will be different from a real
COP8 processor. The first cycle will be that of a
skipped INTR instruction. For multi-byte instructions,
subsequent cycles will be the same as that of execut-
ed NOP instructions.

When a breakpoint is set on an instruction, emulation
breaks before the instruction executes. The first two
bytes of the stack will be overwritten when the break-
point is reached. This is because INTR instructions
are used to implement breakpoints.

For the COP880 family of processors, the timers are
shut off at breakpoints shortly after emulation stops.
When the emulation resumes, the timers are restarted
just before the emulation of the target application pro-
gram actually begins. In the COP884/COP888 family
there is no delay in the stopping or restarting running
timers upon reaching a breakpoint or when emuiation
resumes.

To allow for clock resynchronization in the COP micro-
controller, it is necessary to program two NOP instruc-
tions immediately after the processor comes out of
the HALT mode. When the multi-input wakeup inter-
rupt is enabled, the first two instructions of the inter-
rupt routine must be NOP’s. If no interrupts are used
to enter the HALT mode, then two NOP’s must follow
“enter HALT mode” (set G7 data bit) instruction.

As with the HALT mode, it is necessary to program
two NOP’s to allow clock resynchronization upon re-
turn from the IDLE mode. The NOP’s are placed either
at the beginning of the IDLE timer interrupt routine or
immediately following the “‘enter IDLE” mode instruc-
tion.

5.3 Prom Programmer

The COP8 Debug Module can program the code
memory in most of the supported EPROM or HYBRID
devices. Operation of the programmer is under control
of the host software from the Misc|PROM Program-
mer pull down menu. To run the EPROM programmer
a EPROM programming voltage Vpp (nominally 13V)
must be supplied. There is an option to use an exter-
nal Vpp source or use the on-board Vpp generator.
The on-board Vpp generator is built by populating the
board with the components marked on the Debug
Module and adjusting the potentiometer to 13.0V.

All programming operations use the code loaded into
the Debug Module from the File|Load command. The
programming buffer shares the same buffer space as
the emulation memory. Therefore it is possible to load
code into the buffer in COF and COD formats in addi-
tion to the standard HEX formats. It is also possible to
read code from the device in the programming socket.
Code read from the device will be written into the em-
ulation memory in the Debug Module, and may not
match the labels from a previously loaded program.
By default, areas in the emulation memory with no
code will be filled with 0x00 hex bytes; however, you
can use Configure|Options| (Miscellaneous) Code Init
command to change the 0x00 hex byte to any other
byte value.

COP8 DEVELOPMENT SYSTEM A-21

5 MetaLink iceMASTER-COP8 Debug

Module (Continued)

The Misc |PROM |Programmer |EPROM |Program

and Misc |PROM |Programmer |[EPROM Auto func-

tions verify each byte as it is programmed, and the
entire area at completion, so it is not necessary to
separately Verify the parts after programming.

To accomplish correct programming of the EPROM’d

COP8 devices the following procedure must be fol-

lowed:

1. Select the correct device type from the
Misc |PROM Programmer |Device selection.

2. Ensure that the device is blank. To accomplish this,
subject the windowed COP8 device to a UV light
source for the stipulated amount of time. Then per-
form the blank check from Misc |PROM Program-
mer |EPROM |Blank Check command.

3. Load the correct application program into the emu-
lation buffer. This can be done by loading the appli-
cation from the Misc|PROM Programmer |
Code |Load command.

4. If the device has an ECON register (not present in
the HYBRID devices), then select the clock option,
security option and the RAM size option from the
Misc |PROM Programmer |Configuration menu.

5. Program the device either by running Misc |PROM
Programmer |Auto or Misc |PROM Programmer |
EPROM |Program command.

6. If the device has an ECON register then run
Misc |PROM Programmer |Register |Program. This
ensures that the ECON register is correctly pro-
grammed.

Note: In HYBRID parts, the Options register contents have to be em-
bedded into the assembly program before the part is pro-
grammed. There is no menu selection for the contents of the
Options register in the Debug Module.

A-22 COP8 DEVELOPMENT SYSTEM

6 MetaLink Evaluation and Programming
Unit

6.1 EPU Overview

The iceMASTER-COP8 Evaluation and Programming
Unit is a low cost, In-Circuit Simulator which can be
used to debug code and hardware designs for the
COP880C microcontroller and to program the
COP8780 and COP87M80 EPROM/QOTP microcon-
trollers. The host computer for the EPU-COP8 is a
standard PC (or compatible) running the DOS Operat-
ing System. The interface to the EPU-COP8 is over
the RS-232C serial channel at 115,200 baud.

COP8 code can be generated using the COP8 assem-
bler/linker provided, or the very efficient C Compiler,
COPS8C, available from Byte Craft Limited. Once your
code is loaded you can quickly move through the soft-
ware and hardware evaluation process, while provid-
ing complete control over the microcontroller. The
EPU-COPS8 is a cost efficient system that offers an
easy introduction to the COP8 family of microcontrol-
lers. The EPU-COP8 offers the same user interface as
the MetaLink iceMASTER-COP8 Debug Module and
the MetaLink iceMASTER-COP8/400 emulator, allow-
ing for an easy migration to the low cost Debug Mod-
ule or to a full featured ICE.

6.2 EPU PROM Programmer

After completing the debugging process, you may pro-
gram your code into the COP8780 or COP87M80
EPROM/OTP microcontroller using the EPU-COPS.
The on-board voltage generator supplies all the volt-
ages required to program the EPROM/OTP using only
the wall mounted power supply provided. This feature
provides an easy transition from In-Circuit Simulation
to real-time target test mode.

7 Using NeuFuz4
7.1 INSTALLATION PROCEDURES

The NeuFuz4 software can be installed from the distri-
bution disk into drive A by typing:

A:install c:\n4dir

Where “c:\n4dir” is the directory where the execut-
ables are copied into. The installation process is menu
driven and should therefore be self-explanatory.

After this invoke MS-Windows and create a new Pro-
gram Item from the Program Manager and enter the
following at the Command:

c:\n4dir\n4.exe
At the description enter:
NeuFuz4

Then click on OK and the Program Manager will cre-
ate an icon called NeuFuz. To run NeuFuz click twice
on the NeuFuz4 icon.

7.2 GENERAL DESCRIPTION

NeuFuz4 is a software design system, based on Na-
tional Semiconductor’s proprietary NeuFuz technolo-
gy. It learns a system behavior and then automatically
generates Fuzzy Logic Rules and Membership Func-
tions. Determining a proper set of Fuzzy Rules and
Membership Functions needed to adequately de-
scribe a system behavior is the most difficult step in
Fuzzy Logic design. NeuFuz4 simplifies this task by
using Neural Networks learning and generalization ca-
pability to accomplish this task. NeuFuz4 also pro-
vides graphical on-line capabilities to verify, tune and
optimize the Fuzzy Logic design model. NeuFuz4 can

also be used as a general purpose learning system
with the solution implemented in Fuzzy Logic. Addi-
tionally, NeuFuz4 translates Fuzzy Logic designs into
COP8 Assembly code automatically. This code may
then be assembled for a variety of target COP8 proc-
essors.

7.3 THE NeuFuz DEVELOPMENT PROCESS

NeuFuz4 uses a modified Back Propagation algorithm
to train the multilayered feedforward Neural Network.
A set of input-output data (that covers the entire range
of system operation) along with the user selected
training parameters are fed into the Neural Network.
The Neural Network trains iteratively by back propaga-
tion thereby altering the weights for the interconnec-
tion between neurons (This is also known as learn-
ing.). When the training process is completed, the out-
put of the Neural Network is translated into Fuzzy Log-
ic Rules and bell shaped Membership Functions. Neu-
Fuz4’s Neural Network is specially constructed to map
its knowledge directly into Fuzzy Logic. This enables
NeuFuz to automatically generate Fuzzy Rules and
Membership Functions that describe the trained sys-
tem. The user has the choice to do approximations
and implement the Fuzzy solutions on an inexpensive,
low performance embedded controller, thereby sacri-
ficing some accuracy or implement the bell shaped
Membership Functions directly on a high performance
embedded controller, generating a more accurate re-
sult. NeuFuz4 has the ability to approximate Member-
ship Functions with traditional shapes (such as trian-
gles, trapezoids and polygons).

COP8 DEVELOPMENT SYSTEM A-23

7 Using NeuFuz4 (Continued)

Modify System
1/0 Data
Training Patterns)

Generate System 1/0
Data (Training Patterns) [€

A

Enter Training
Parameters.
Train Neural Network

Is
Neural Net
Trained?

Edit Fuzzy Membership
Function Approximations.
Evaluate and Optimize
Rules,Membership Functions

Solution No

Accuracy
0k?

Generate Assembly
Code

A

Create Fuzzy
Execution Module

TL/DD/12071-16
NeuFuz Based Development Process

A-24 COP8 DEVELOPMENT SYSTEM

A highly intuitive graphical user interface enables the

user to verify and optimize the Fuzzy solution. The

user can eliminate those Rules which contribute less

to the solution while having total control over the ac-

curacy of the solution.

The final step of the design process is porting the

Fuzzy solution to an embedded processor. NeuFuz4

supports this via the automatic code generator. It gen-

erates COP8 Assembly code that may be compiled for

various COP8 processors.

1. Neural Network Training.

2. Fuzzy Rules and Membership Functions
Generation.

3. Fuzzy Rule Verification and Optimization.

4. Assembly Code Generation.

5. Fuzzy Execution Module Creation.

7.4 Neural Network Training

The first step in using NeuFuz4 is to create an input
ASCII data file containing the system training patterns,
where each line is treated as a pattern. Each pattern
is in the form of the inputs to the system followed by
the output. The training pattern can have up to four
input values and one desired output value.

7 Using NeuFuz4 (Continued)

- | (ETLTTES (TR (W) ENITYY STRTEICT S

[F LD SIS YSERV e Wit TPOT]

Learning

Hel)

[NeuraliNetllT rainMal

Reset

[Not started |

0 Set Model Name creac
0 Set Epsilon

O Set Learning Rate 0.0001
0O Set Learning Factor 0.0001
O Set Directory

O Set Membership Functions

c:\n4dir

ayojo

The Neural Network Training window is used to con-
trol the training process. The training parameters for
the Neural Network training are specified within this
window: Membership Functions, Epsilon, Learning
Rate and Learning Factor. The structure and the train-
ing behavior of the Neural Network are determined by
these parameters. Below is a brief description of the
Neural Network training parameters.

7.4.1 Membership Functions

This is the number of Membership Functions used to
divide the input space. Each input can be represented
from 2 up to 7 Membership Functions. Selection of
more Membership Functions will generate a solution
with higher resolution and greater accuracy.

7.4.2 Learning Rate and Learning Factor

These parameters govern the Neural Network train-
ing. Setting and changing these parameters appropri-

TL/DD/12071-17

ately is a key to quick and accurate training of the
Neural Network.

7.4.3 Epsilon

This is the absolute maximum error allowed in the
Neural Network on completion of training. This param-
eter affects the rate of convergence of the Neural Net-
work training and accuracy of the solution.

For useful instructions on how to select the appropri-
ate epsilon, learning rate and learning factor, see the
NeuFuz user’s manual.

7.4.4 Error Window

When the Neural Network is being trained to learn the
system behavior, it is important to monitor the error
window. This window will provide very timely and use-
ful hints on the appropriateness of the data set provid-
ed to the Neural Network and also the set of present
training parameters.

Errors
@Lisl by size
OList by patt
Patt Err/Eps Cycle 23 163 Errors
006 [6.830] 0.254566 0.498802 0.154755 0.336767 = 1.000000

106 [6.257] 0.214028 0.541579 0.226597 0.386366 = 1.000000
117 [6.201] 0.184536 0.878423 0.401462 0.205990 = 1.000000
015 [6.173] 0.172063 0.880041 0.403195 0.202790 = 1.000000
177 [5.858] 0.102738 0.867444 0.380348 0.201449 = 1.000000
139 [5.744] 0.202417 0.778406 0.538705 0.525341 = 1.000000
190 [5.733] 0.202261 0.746271 0.423220 0.473491 = 1.000000
108 [5.706] 0.182322 0.783022 0.547096 0.535474 = 1.000000

COP8 DEVELOPMENT SYSTEM A-25

TL/DD/12071-18

7 Using NeuFuz4 (Continued)

This window will clearly indicate how many pattern
sets indicate error at any specific cycle (iteration) of
Neural Network training. One important hint is that if
the pattern displaying the maximum error is same after
many cycles and also the magnitude of the error is not
diminishing, the user may be better off either evaluat-
ing the data pattern or resetting the Neural Network
training parameters in order to accelerate the training
process. More useful hints are provided in the users
manual on how to interpret the error window informa-
tion.

7.5 Fuzzy Rules And Membership Functions

Generation

The NeuFuz Neural Network is constructed to map its
knowledge directly into Fuzzy Logic. The generated
Membership Functions are bell shaped (sigmoidal) as
opposed to fixed shapes (triangles, trapezoids and
polygons). Bell shaped Membership Functions en-
hance NeuFuz’s ability to represent the knowledge

base in Fuzzy Logic. A Rules file is created at this
stage, which contains the information of Fuzzy Rules
and Membership Functions. NeuFuz generates Rules
with crisp output values. For example, a Rule generat-
ed by NeuFuz may look like this:

"If Temperature is High and Viscosity is
Very Low__then Pump__RPM is 303"

7.6 Membership Functions Editing

NeuFuz generates bell shaped Membership Func-
tions. In order to implement the Membership Func-
tions on an embedded processor, the user has the
capability to approximate the Membership Functions
to a six-vertex polygon (also called a shouldered trap-
ezoid). A graphical window is used to edit the approxi-
mated Membership Functions generated by the Neu-
ral Network after the training phase. It is necessary to
edit the approximations to minimize the error as re-
quired by the application.

-] NouFuzi-—Clversioni. 2ationallemicondyclorfor [v]a]
N FunctionlEditing i

A-26 COP8 DEVELOPMENT SYSTEM

TL/DD/12071-19

7.0 Using NeuFuz4 (Continued)

The Rules file is automatically updated when changes
to the Membership Function approximations are
made.

7.7 FUZZY RULES VERIFICATION AND OPTIMIZATION
The Rules verification feature allows the user to ex-
amine and analyze the three outputs of NeuFuz.

1. Neural Network output.

2. Fuzzy Rules output with bell shaped Membership
Functions.

Fuzzy Rules output with approximated Membership
Functions.

A graphical view of these three outputs can be used to
compare the difference in accuracy of the Fuzzy solul-
tions as compared with the Neural Network solution.

3.

FileQDisplays|

(1. 2BNationallSemiconductoriCorp.]

[View! Help
[RulesBVePificatiorliwithlDeletiOnF actorl=0. O]

In addition, the user can use this to check the accura-
cy of the approximations made to the Membership
Functions. The point to note here is that the output of
the Fuzzy Rules is the defuzzied value of the contribu-
tion of Rules.

7.7.1 Deletion Factor

A deletion factor is used to optimize the number of
Fuzzy Logic Rules. Optimization is achieved by elimi-
nating marginal Rules. Having fewer Rules results in
smaller output code size and decreases the response
time of the Fuzzy Logic solution. The deletion factor is
a value between 0 and 1. This value affects the num-
ber of Rules in the Rule base and eliminates the less
significant Rules. The user has the capability to re-
evaluate the accuracy of the solution after certain
Rules have been eliminated.

lZZA.E” 30.00—” seses II:'"]I 63.00 I 63.00 I 61.25 I
Max

100.00

Min
Input Input Input
1 2 3

Input
4

9 Rules
Bell MF

9 Rules
Appx MF

Neural
Net

TL/DD/12071-20

COP8 DEVELOPMENT SYSTEM A-27

7.0 Using NeuFuz4 (Continued)

7.7.2 Recall

NeuFuz has a Recall feature which is used to verify
the accuracy of the Fuzzy Logic solution provided by
NeuFuz (This is analogous to the recall phase of a
Neural Network, when no training occurs). During re-
call, a set of input patterns is read from a file and an
output file is generated with the corresponding outputs
from the Neural Network, the Fuzzy Rules with bell-
shaped Membership Functions and Fuzzy Rules with
approximated Membership Functions, thus providing
an easy comparison of these solutions.

7.8 COP8 ASSEMBLY CODE GENERATION

The Code Generation feature is used to generate
COP8 Assembly code for the Fuzzy Logic model from
the Rules file. The code generator can be used to
provide warning messages in case the memory avail-
able on the specified COP8 device is exceeded. By
clicking on the “RUN CODE GENERATOR” button
COP8 assembly code will be automatically generated.

A-28 COP8 DEVELOPMENT SYSTEM

This code is richly commented and is extremely com-
pact. This code also includes some general purpose
math routines.

7.9 FUZZY EXECUTION MODULE CREATION

In order to create a Fuzzy Execution Module, the
Fuzzy Logic Assembly code generated by NeuFuz4
should be integrated with the application routine. This
is accomplished by using the COP8 Assembler, linker,
debugger and development tools. The following steps
are followed by the Fuzzy Execution Module while ex-
ecuting in a COP8 embedded processor.

1. Fuzzification

2. Rule Contribution

3. Rule Evaluation

4. Defuzzification

Note: The above mentioned steps of Fuzzification, Rule Contribution,
Rule Evaluation and Defuzzification are also performed during
Fuzzy Rules Verification and Optimization.

Appendix B
ELECTRICAL CHARACTERIZATION DATA

This appendix presents characterization data for the COP800 Basic Family members. All
graphs in this appendix apply to the entire COP800 Basic Family unless otherwise noted.

Characterization data is information gained from testing a wide range of sample of parts.
Most tests are performed over the full temperature and operating voltage range of the
COP800 devices. All information provided in the graphs represents typical values. Most
parts will meet these typical values. However, National Semiconductor does not
guarantee these values on all parts. Guaranteed numbers are provided in the AC and DC
Electrical Characteristics tables found in every datasheet. Guaranteed numbers are
tested on all COP800 devices shipped to our customers.

COP800 Dynamic-Idd vs Vcc (Crystal Clock Option)

6 T T T T T T T
sl L _d____I					
! ya
tfF———t———————— — 757
17,
- R
g ‘v
2 3 J R —
3 |
el
H |
|
|
L T T T T T T TR T T T I
| | |, - | | |
| | iy e | | |
i i -1t _-=" i i i
1————+——Tﬂ*;;;f:——%————F———+—“*ﬁ————
A _ - | | | | |
I hMHz | | | | |
ol | | | | | | |
0 1 | 1 i | i I
2 2.5 3 3.5 4 4. 5 5.5 6
Vece (Volts)

This graph is valid for all COP800 Basic Family members except the COP820CJ and
COP8780C.

ELECTRICAL CHARACTERIZATION DATA B-1

COP820CJ Dynamic-Idd vs Vcc (Crystal Clock Option)

4

I e e e

') S ——

(vw) PPI

4.5
Vee (Volts)

COP8780C Dynamic-Idd vs Vcc (Crystal Clock Option)

| [|
\ I | I
\ I [_
\ | I I
T NP . VNV . e
/ | I I |
_ | I I
/_ | | |
l|||/|_|||.|+cl|.l|4+ |||||| +||||.
N | \
\ |)
I | !
L __L___1 1]
1 | |
[N | |
oy |
oy b
==~~~ tr— -\~~~ t———]
| Ny |
-V _
o= I
IR DU, R —— PR T ——
| I |
| I _
_ K I
I [N S I
| T [TTXT T T
! [I
| |
| [N
F————————t =t ————= —-——
| | v | |
| I v | I
_ | | | |
1 1 1 Il |
~ 0 n - ™ o~
(vw) ppI

5

5.2
Vce (Volts)

ELECTRICAL CHARACTERIZATION DATA

B-2

COP800 Halt-Idd vs Vcc

£ AN | I | |
H _ \ I I I I
3 [N | | | |
. 3 i Nk et i S Bt B el el
. g [PN I I I
o 0 Lo I I
0 531 A | NN N DS I EON RN
o o I _ J | _
w 2 > I _ I\ _ _ I
= 3 | | N I |
a mfi|111|_|||4|4|4|||ﬁ1||7|||
g = I AN I |
w O 2 | | I N I |
Fa— w-|||rlllr SR R IS ORI RN
@ 3 [| [v ol I
3 g 3 [[[Iy ool
5 g I ! _ RN I
s 2 L _____ BRGSO SN
-3 E o r I T I
> 3 | I | I ‘o I
m.m g I , | | /_ |
8 Bl LN N
0 o | | | | |
- g : _ ! AN AN
K s I | | ° R
° e e A Rty Nk nh it s
o 5 _ _ | [ot
n 2 S I [I I [
o el N
o g _ | | | I l
= | , | | | |
o _ | ! _ Y
N9 Sttt pheti bt Bl Mkt Sl ey
o _ [| I I I\
mm | | _ I [AN
> ®© 1 i | | Il [N
~ 2 nnv o 0 o wn =3 w o
hm v -« - (] m o~ o
g6
(= 0 =
w3
(vn) ppI £ 8 (vn) pPI
=

B-3

5.2

5
Vce (volts)

ELECTRICAL CHARACTERIZATION DATA

CcoP800 Standard Port L/C/G Push-Pull Source Current

N\ _veeds.ov

S

N e

VCC=4.5V

e —m e

J
|
|
1
3
Voh (Volts)

(vw) yor

This graph is valid for all COP800 Basic Family members except the COP8780C.

copr8780 Standard Port L/C/G Push-Pull Source Current

Tk —-————

|
|
i
3
Voh (Volts)

(¥w) yor

1b————=

ELECTRICAL CHARACTERIZATION DATA

B-4

COP800 Standard Port L/C/G Push-Pull Sink Current

| [[| | | | |
| | | | | | I |
o I Iy I | I |
v | Iy I | I |
T R U U N TR SR RN RN (R
v] oy I | I |
v\ | [i I | |
v\ I I I | | |
\ | o | | | |
R ¥ Y S IR AN AR AR RENEN RS
\ W_ | v 2 | _.w |
Iy ,m_ | ,_ < | | _2. |
[| | | I |
AN | /m [I g1
Y RS N HURY L) BN RN L S
| { | Iy | | |
| N IR I I I
| [N [| ! I
| 1N [| | |
AT P Y R A I A S S
]] Mo \ | | |
| | N N | | |
I | N A | |
I | | . | | I I
U N Iy U N W B
I I | LN \ | |
I I | I NN I
| I | I N |
I I | I ! NN I
Y N Y SNPRNY TR (N EAN P A
| | I I I | NN
| | | | ! | NN
[N
| | | | i | I 1Y
| | | | i 1 i
@ o - o o @ 0 - o
ial - ial ~— -
(yu) TOI

2
Vol (Volts)

1.5

COP820CJ Pins L4-L7 Sink Current

ol I [T | [I
'l I | _ I I
'l I | I I |

R T Y B
N | Ph I I
\l | [I ! I
\ | | I _ |

e e St U S N S EE
0 I o _ I
I\ I [| |
I _ [I |

F——— b= == —t—— — = = —]~ — —
[N by I I
oy [T I I
oo o _ _

P B — — A =Bt~ =~~~ — -
e\ ISt | _ I o
() / b I (3
LS 1N 1 8 I I8

It i s Bt e it nhlbe i Ry
| N N I _

I I N y I I
| | AR A |]

I i s ANt th it et e Iy
_ _ N |
T N

\

R A e B Nk S It
| _ I _ N
| | [| AN

R IR IR PR [B S S NI S
I I _ [r =3
_ _ I _ | N
[I | | I NN
1] 1] | | >

n o n o n o n o

™ ™ o~ o~ ial Ll

(vu) t1OI

2.5

2
Vol (Volts)

1

B-5

ELECTRICAL CHARACTERIZATION DATA

cop800 Standard Port L/C/G Weak Pull-up Source Current

| | [| | P | | | | | | .7
| | I | | 7 . | I I | I I L
| | I | pred g | I | I I RS
| I I | -7 H | I | I I Js o
_ I | R 3 ! I _ I -0 I
A T S S S N P e e e e
I oy T I o I I | LA I |
_ N [3 | .- R _ |
I Lok I 2 | I g__w" " | I |
| I8 I I g I (Y 4 I | |
_ P I v S i | S, | | |
e e e e ARk /b bt [| i A s St Sttt et il —~
| A . Ay I L | |
| I s o _ m | [V | |
AR I 1A N R | IR S N
R | 517,00 4 E [I |
===t/ == "2 -1 it laid s mlei
| = g] | | >
| [o 7 | | R
| S \ " I3
| 3 I]
| o /| | |>
T - i A e M
o8 A I I
i I | |
Sl o I |
gl I | |
G S PR Y ROV S MR RUNP DU
g T | I I | I I
| [
a | |
811 | | | | I | |
] I | I | I I |
1 { 1 | | | i |
o o o (=3 o o o o
@ [l o wn - ™ o~ —
(¥n) dndr (¥n) dndr

3
Voh (volts)

ELECTRICAL CHARACTERIZATION DATA

B-6

COP800 Port D Source Current

25

I I T ~ ° 3 “ 4_ | | | I P
_ _ M L7 S _ _ _ LA
| | ! L. S _ _ I I | e
| ! ! s - I I | | I Lo
_ | | . 8 4 b b 1
T g RO
! I 3 I | 9 " _ | | I I !
! g } | g 8 I I | Lo I L
! e |) 8 i I I I) _ I L,
_ 2N S 2 o I RN S NS SN A B
||||| B e e i b K- g Y S [S
_ I Iz [2 2 e . 9 ‘
! ’ .) 2 3 (-~ J I [A
! / by ¥ - T [Ix I
| O P8, w @ 2 “ v“ /) n | P s :
| /o Pz, | = 8 o — It A w S A ,
||||| S S N S B - 8 - T et e
1 I i e E 3 L _ [/o
" y " . ! 2 5 E g [I I A |
L/ ! % Lok s = B A | e I
V/ ! / bR £ g Iy I L0 _
NN S NRNNS U 7/ DU NN § SO SO N P N
lllllllllllllll s — —_— — ~ 1
A _ T T N2 8 P _ b !
\ " " m ﬁ W 3 m s | |] | |
I/ | / ! [8 © “ | | ! _ :
| | ! ! S | | | I | |
/ / a I [TN AU SR A N
I S D, _lihls.ul..|1|+| —_d4 m 71 I | /1 I]
1T I~ [[0 /1 I Lol | [
[I ! | ® I ! o | I
o [, i s _ I I I | I
_ | [! 5 _ [I I | I
| | | | lm | I | | | |
n_U n:ﬁ M r_\. 00 wo © ~ © n -«) ~
g6
M,w (vur) yor
(vw) yor c c
- ©

B-7

3
Voh (volts)

ELECTRICAL CHARACTERIZATION DATA

COP800 Port D Sink Current

| ! | | | | | |
o | | | I | I |
T I | I _ | I
AU ST Ry gy R P
vle | [| I I | I
16 | I I | [|
1S T R R R
F——p———— k=R — =~~~ —
A [Y I " I _
i | <]} | |
N (- I I I |
F——t =+ ——t——t——F == ——|—— ———
Iy I Y | I | I
i I | \ | | | |
[| I i I | | |
F——t—vt——tr——t——pF——f———————
N ! N [I 2
[N R
| N A | L
i it i Nl et it i S B
\
I N _ I I I |
| i N AN | I |
| i I~ I I I [
T T T T I T TR T T T T T
| | _ N N | I
_ ! _ PNC N | |
I | _ N _ _ I
i [Rt Rt Nt A B W
_ i I i [I
| N I ; I T~ K
L L b b sl N
| | I ! I I INIQN|
_ ; I | I [RN
| : | i | | I N
1 i i i | 1 | | S
wn o n o n o wn o n
- - ™ ™ o o~ - —
(vw) TOI

2.5
Vol (Volts)

2

Temperature

COP820CJ Brown Out Voltage vs.

T 1T 11 |

| | | I 1/
F—+—+—+—4—t—t—t—4r+4-

| | 1 [

| | | [

| | | [

| | I [
L1 11

[I A |

| | [|

[I Y I B

| | [|

| | (A |
F~—T— T T T-7T7

[o |

| | i | |

| [| |

[I T B | !
S T T P

| [| | |

| I | | |

[T T B |

(I T I R T B
IR A R A A | A

| [| |

[[

| I | |

| | ! | |

Il | | (I
F—+—+—+—4—=+r+—

[i | 7

(VA ! | v

(I i [|

(/2 . B |

¥ | i I L1

o~ - © o -

< m ™ oo

(S3TOA) ©631TOA INO uMoOIgd

40

20 40 60 80

Temperature (C)

-20

ELECTRICAL CHARACTERIZATION DATA

B-8

INDEX

A (see Accumulator)
AC power control 13-14
Accumulator 2-6, 8-9
Adaptor boards (Scrambler Boards) 12-10
Add (ADD) 8-12
Add with carry (ADC) 8-11
Addressing modes
Direct 8-2
Immediate 8-3
Immediate Short 8-4
Indirect from Program Memory 8-4
Jump Absolute 8-5
Jump Absolute Long 8-5
Jump Indirect 8-6
Jump Relative 8-5
Register B or X Indirect 8-3
Register B or X Indirect with Post-Incrementing/
Decrementing 8-3
Analog to digital conversion 13-18
And (AND) 8-13
Arithmetic Logic Unit (ALU) 2-9

B

B register 8-9
Battery-powered weight measurement 13-21
Bidirectional /O 7-1
Binary division 13-38
Binary multiplication 13-37
Binary/BCD arithmetic operations 13-34
Block diagram

COP820C 9-1

COP820CJ 11-2

COP840C 9-1

COP8620C 10-1

COP8640C 10-1

COP8780C 12-2

COP880C 9-1
Board layout 13-48
Brown Out 11-13
Busy flag 5-4

C

C (Carry) 8-9

Characterization data
COP800 Dynamic Idd B-1
COP800 Halt-Idd B-3
COP800 Port D sink current B-8
COP800 Port D source current B-7
COP800 push-pull sink current B-5
COP800 push-pull source current B-4
COP800 weak pull-up source current B-6
COP820C/84C/820CJ Port D source current B-7
COP820CJ Brown Out voltage B-8
COP820CJ Dynamic-Idd B-2
COP820CJ Halt-1dd B-3
COP820CJ sink current B-5
COP8780 Dynamic-Idd B-2
COP8780 push-pull source current B-4

COP8780 weak pull-up source current B-6
CKO (Clock Output) 7-4
Clear accumulator (CLR) 8-14
Clear RAM 13-33
Clock Output 7-4
Clock-stopping method 6-1
CNTRL register 2-7
Comparator 11-21
inverting input 11-21
non-inverting input 11-21
output 11-21
Comparator control and status bits 11-22
CMPEN 11-22
CMPOE 11-22
CMPRD 11-22
enables comparator 11-22
enables comparator output 11-22
reads comparator output 11-22
COP800 port structure 7-1
COP820C
block diagram 9-1
data memory 9-6
emulation devices 9-10
input/output ports 9-4
mask options 9-9
memory map 9-7
pin descriptions 9-4
pinout/packages 9-3
program memory 9-6
register bit maps 9-6
reset 9-7
COP820CJ 11-1
block diagram 11-2
Brown Out 11-13
CMPIN- 11-5
CMPIN+ 11-5
CMPOUT 11-5
comparator 11-21
data memory 11-6
device pinout/packages 11-2
emulation devices 11-26
exit HALT mode 11-22
high sink capability 11-5
input/output ports 11-5
mask options 11-25
memory map 11-9
MIWU 11-5
MODOUT 11-6
multi-input wake up 11-22
multi-input wakeup logic 11-23
pin descriptions 11-4
power-on reset 11-12
program memory 11-6
register bit maps 11-6
reset 11-9
COP840C
block diagram 9-1
data memory 9-6
emulation devices 9-10

INDEX

input/output ports 9-4
mask options 9-9
memory map 9-7

pin descriptions 9-4
pinout/packages 9-3
program memory 9-6
register bit maps 9-6
reset 9-7

COP8620C 10-1

block diagram 10-1

data memory 10-4

device pinout/packages 10-1
EECR and EE support circuitry 10-5
emulation devices 10-10
input/output ports 10-3
mask options 10-9

memory map 10-7

pin descriptions 10-1
program memory 10-4
register bit maps 10-6

reset 10-9

COP8640C 10-1

block diagram 10-1

data memory 10-4

device pinout/packages 10-1
EECR and EE support circuitry 10-5
emulation devices 10-10
input/output ports 10-3
mask options 10-9

memory map 10-7

pin descriptions 10-1
program memory 10-4
register bit maps 10-6

reset 10-9

COP8780C 12-1

adaptor boards (Scrambler Boards) 12-10
block diagram 12-2

data memory 12-6

device pinout/packages 12-2
Duplicator Board 12-10

ECON register 12-6

emulation cross reference 12-12
emulation devices 12-12

erasing EPROM memory 12-11
input/output ports 12-5

memory map 12-8

one time programmable 12-6, 12-12
oscillator circuits 12-10

OTP 12-6

pin descriptions 12-2

program memory 12-6

programming EPROM memory 12-10
RAM size 12-6

register bit maps 12-7

reset 12-8

security bit 12-6

third-party programming support 12-10
user selectable clock 12-6

UV erasable memory 12-6

COP880C

block diagram 9-1

INDEX

data memory 9-6
emulation devices 9-10
input/output ports 9-4
mask options 9-9
memory map 9-7

pin descriptions 9-4
pinout/packages 9-3
program memory 9-6
register bit maps 9-6
reset 9-7

Data memory 2-3
COP820C 9-6
COP820CJ 11-6
COP840C 9-6
COP8620C 10-4
COP8640C 10-4
COP8780C 12-6
COP880C 9-6

Data memory fetches 2-11

Data memory map 2-4

Decimal correct 8-15

Decimal correct (DCOR) 8-15

Decoupling 13-48

Decrement accumulator (DEC) 8-16

Decrement register and skip if zero (DRSZ) 8-17

Dedicated input 7-1

Dedicated output 7-1

Device pinout/packages
COP820C 9-3
COP820CJ 11-2
COP840C 9-3
COP8620C 10-1
COP8640C 10-1
COP8780C 12-2
COP880C 9-3

DRSZ 2-14

Duplicator Board 12-10

ECON register

COP8780C 12-6
EE support circuitry 10-5
EECR support circuitry 10-5
EEPROM 10-5
Electric Field emissions 13-47
Emulation cross reference 12-12
Emulation devices

COP820C 9-10

COP820CJ 11-26

COP840C 9-10

COP8620C 10-10

COP8640C 10-10

COP8780C 12-12

COP880C 9-10
EPROM

configuration register 12-6

erasing the COP8780C 12-11
Erasing the COP8780C EPROM 12-11
Exchange memory with accumulator (X) 8-51

Exclusive or (XOR) 8-53

Exit HALT mode 7-4, 11-22

External event counter mode 4-4
example 13-13

External Interrupt Input 7-4

G
GIE (Global Interrupt Enable) 3-2

H

HALT mode 6-1

exit 6-2
HALTY/ Restart (Exit HALT Mode) 7-4
Hardware development tools A-1
Harvard architecture 2-1
HC (Half Carry) 8-9
High-sink drive 7-2
Hi-Z input 7-1

1

If B pointer not equal (IFBNE) 8-19
Increment accumulator (INC) 8-24
Index registers 2-8
Industrial timer 13-23
Input capture mode 4-5
Input protection 13-44
Input/output ports 7-2

COP820C 9-4

COP820CJ 11-5

COP840C 9-4

COP8620C 10-3

COP8640C 10-3

COP8780C 12-5

COP880C 9-4
Instruction decoding and execution 2-12
Instructions

ADC 8-11

ADD 8-12

AND 8-13

CLR 8-14

DCOR 8-15

DEC 8-16

DRSZ 8-17

IFBIT 8-18

IFBNE 8-19

IFC 8-20

IFEQ 8-21

IFGT 8-22

IFNC 8-23

INC 8-24

INTR 8-25

JID 8-27

JMP 8-28

JMPL 8-29

JP 8-30

JSR 8-31

JSRL 8-32

LAID 8-33

LD 8-34, 8-36, 8-37, 8-38

NOP 8-39

OR 8-40

RBIT 8-41

RC 8-42

RET 8-43

RETI 8-44

RETSK 8-45

RRC 8-46

SBIT 8-47

SC 8-48

SUBC 8-49

SWAP 8-50

X 8-51

XOR 8-53
Interrupt (INTR) 8-25
INTR (External Interrupt Input) 7-4, 8-30

J
JID 2-14
JMP 2-14
JP 2-13
Jump absolute (JMP) 8-28
Jump absolute long (JMPL) 8-29
Jump indirect (JID) 8-27
Jump relative (JP) 8-30
Jump subroutine (JSR) 8-31
Jump subroutine long (JSRL) 8-32

L
LAID 2-14
LED drive 13-23
Load accumulator (LD) 8-34
Load accumulator indirect (LAID) 8-33
Load B pointer (LD) 8-36
Load memory (LD) 8-37
Load register (LD) 8-38

M
MA (Memory Address) 8-9
Mask options
COP820C 9-9
COP820CJ 11-25
COP840C 9-9
COP8620C 10-9
COP8640C 10-9
COP880C 9-9
Master mode 5-1, 5-5
MD (Memory Direct) 8-9
Mechanical shielding 13-50
Memory map
COP820C 9-7
COP820CJ 11-9
COP840C 9-7
COP8620C 10-7
COP8640C 10-7
COP8780C 12-8
COP880C 9-7
MICROWIRE Select 5-3
MICROWIRE/PLUS 5-1
circuit block diagram 5-2
clock /O 7-4
continuous mode 13-3
control register bits 11-8
fast burst output 13-4
interface timing 5-3
master mode 5-1, 5-5
master/slave protocol 13-1
serial data input 7-4
serial data output 7-4

INDEX

3

slave mode 5-1, 5-5
timing 5-2
Modulator/Timer

modulator block diagram/output waveform 11-18

MSEL (MICROWIRE Select) 5-3
Multi-input wake up-
COP820CJ 11-22
Multi-input wakeup logic 11-23
Multi-Input wakeup registers
Wakeup enable 11-22
Wakeup Pending flags 11-22
Wakeup transition select 11-22
WKEDG 11-22
WKEN 11-22
WKPND 11-22

N
NMC93C06 Instruction Set 13-7
NMC93C06-COP820C interface 13-6
No operation (NOP) 8-39

o
One time programmable 12-6, 12-12
OR 8-40
Oscillator circuits 2-18, 2-19
COP8780C 12-10
OTP (see One time programmable)

P
PC (see Program counter)
PCL (see Program counter)
PCU (see Program counter)
Phase control of an A.C. load 13-29
Pin descriptions
COP820C 9-4
COP820CJ 11-4
COP840C 9-4
COP8620C 10-1
COP8640C 10-1
COP8780C 12-2
COP880C 9-4
Port C 7-2
Port D 7-2
Port G 7-2
alternate functions 7-3
Port I7-3
Port L 7-3
Power wakeup circuit 13-40
Power-on reset 11-12
Program counter 2-6, 8-10
Program memory 2-3
COP820C 9-6
COP820CJ 11-6
COP840C 9-6
COP8620C 10-4
COP8640C 10-4
COP8780C 12-6
COP880C 9-6
Program memory fetches 2-11
Programming examples 13-33
Programming the COP8780C 12-10
PSW register 2-7, 8-10

4 INDEX

Pulse width modulation A/D 13-18
Push-pull output 7-1
PWM mode 4-3

RAM size 12-6

REG 8-10

Register bit maps
BUSY 11-8
C11-8
CMPEN 11-9
CMPOE 11-9
CMPRD 11-9
CNTRL2 11-9
COP820C 9-6
COP820CJ 11-6
COP840C 9-6
COP8620C 10-6
COP8640C 10-6
COP8780C 12-7
COP880C 9-6
ENI11-8
ENTI 11-8
GIE 11-8
HC11-8
IEDG 11-8
IPND 11-8
LOEDG 11-6
LOEN 11-7
LOPND 11-7
L1EDG 11-6
L1EN 11-7
L1PND 11-7
L2EDG 11-6
L2EN 11-7
L2PND 11-7
L3EDG 11-6
L3EN 11-7
L3PND 11-7
L4EDG 11-7
L4EN 11-7
L4PND 11-7
L5EDG 11-7
L5EN 11-7
L5PND 11-7
L6EDG 11-7
L6EN 11-7
L6PND 11-7
L7EDG 11-7
L7EN 11-7
L7PND 11-7
MC111-9
MC2 11-9
MC3 11-9
MICROWIRE/PLUS 11-8
MSEL 11-8
PSW 11-8
SL111-8
SLO 11-8
TC111-8
TC2 11-8

TC3 11-8 Timer PWM example 13-11

TPND 11-8 Timing 5-2
TRUN 11-8 Triac control 13-14
WDREG 11-8
WDREN 11-8 U
WDUDF 11-9 User selectable clock 12-6
WKEDG 11-6 UV erasable memory 12-6
WKEN 11-7 W
Rese‘:vKPND il Watchdog circuit 13-43
COP820C 9-7 Weak pull-up 7-1
COP820CJ 11-9 X
COP840C 9-7 .
COP8620C 10-9 X register 8-10
COP8640C 10-9 z
COP8780C 12-8 Zero cross detection 13-21
COP880C 9-7
Reset carry (RC) 8-42

Reset memory bit (RBIT) 8-41

Reset timing 11-12

Return and skip (RETSK) 8-45

Return from interrupt (RETI) 8-44

Return from subroutine (RET) 8-43

Rotate accumulator right through carry (RRC) 8-46

S
S0 (MICROWIRE/PLUS Serial Data Output) 7-4
Schmitt Triggers 7-3
Security bit 12-6
Serial clock 5-1
Serial communication 5-1
Serial input 5-1
Serial input/output 5-2
Serial interface 5-1
Serial output 5-1
Set carry (SC) 8-48
Set memory bit (SBIT) 8-47
SI (MICROWIRE/PLUS Serial Data Input) 7-4
SI (Serial Input) 5-1
Single slope A/D conversion 13-18
SIO (Serial Input/Output) 5-2
SK (MICROWIRE/PLUS Clock I/0) 7-4
SK (Serial Clock) 5-1
SLO bit 5-3
SL1 bit 5-3
Slave mode 5-1, 5-5
SO (Serial Output), 5-1
Software trap 3-4, 8-25
SP (see Stack pointer)
Stack pointer 2-8, 8-10
Subtract with carry (SUBC) 8-49
Swap nibbles of accumulator (SWAP) 8-50

T
Temperature control 13-29
Test if carry (IFC) 8-20
Test if equal (IFEQ) 8-21
Test if greater than (IFGT) 8-22
Test if no carry (IFNC) 8-23
Test memory bit (IFBIT) 8-18
Third-party programming support 12-10
Timer 1 VO 7-4
Timer capture example 13-10
Timer control bits 4-2

INDEX 5

	01972935 xxxxxxxxxxxxxxx.tif
	01972936.tif
	01972937.tif
	01972938.tif
	01972939.tif
	01972940.tif
	01972941.tif
	01972942.tif
	01972943.tif
	01972944.tif
	01972945.tif
	01972946.tif
	01972947.tif
	01972948.tif
	01972949.tif
	01972950.tif
	01972951.tif
	01972952.tif
	01972953.tif
	01972954.tif
	01972955.tif
	01972956.tif
	01972957.tif
	01972958.tif
	01972959.tif
	01972960.tif
	01972961.tif
	01972962.tif
	01972963.tif
	01972964.tif
	01972965.tif
	01972966.tif
	01972967.tif
	01972968.tif
	01972969.tif
	01972970.tif
	01972971.tif
	01972972.tif
	01972973.tif
	01972974.tif
	01972975.tif
	01972976.tif
	01972977.tif
	01972978.tif
	01972979.tif
	01972980.tif
	01972981.tif
	01972982.tif
	01972983.tif
	01972984.tif
	01972985.tif
	01972986.tif
	01972987.tif
	01972988.tif
	01972989.tif
	01972990.tif
	01972991.tif
	01972992.tif
	01972993.tif
	01972994.tif
	01972995.tif
	01972996.tif
	01972997.tif
	01972998.tif
	01972999.tif
	01973000.tif
	01973001.tif
	01973002.tif
	01973003.tif
	01973004.tif
	01973005.tif
	01973006.tif
	01973007.tif
	01973008.tif
	01973009.tif
	01973010.tif
	01973011.tif
	01973012.tif
	01973013.tif
	01973014.tif
	01973015.tif
	01973016.tif
	01973017.tif
	01973018.tif
	01973019.tif
	01973020.tif
	01973021.tif
	01973022.tif
	01973023.tif
	01973024.tif
	01973025.tif
	01973026.tif
	01973027.tif
	01973028.tif
	01973029.tif
	01973030.tif
	01973031.tif
	01973032.tif
	01973033.tif
	01973034.tif
	01973035.tif
	01973036.tif
	01973037.tif
	01973038.tif
	01973039.tif
	01973040.tif
	01973041.tif
	01973042.tif
	01973043.tif
	01973044.tif
	01973045.tif
	01973046.tif
	01973047.tif
	01973048.tif
	01973049.tif
	01973050.tif
	01973051.tif
	01973052.tif
	01973053.tif
	01973054.tif
	01973055.tif
	01973056.tif
	01973057.tif
	01973058.tif
	01973059.tif
	01973060.tif
	01973061.tif
	01973062.tif
	01973063.tif
	01973064.tif
	01973065.tif
	01973066.tif
	01973067.tif
	01973068.tif
	01973069.tif
	01973070.tif
	01973071.tif
	01973072.tif
	01973073.tif
	01973074.tif
	01973075.tif
	01973076.tif
	01973077.tif
	01973078.tif
	01973079.tif
	01973080.tif
	01973081.tif
	01973082.tif
	01973083.tif
	01973084.tif
	01973085.tif
	01973086.tif
	01973087.tif
	01973088.tif
	01973089.tif
	01973090.tif
	01973091.tif
	01973092.tif
	01973093.tif
	01973094.tif
	01973095.tif
	01973096.tif
	01973097.tif
	01973098.tif
	01973099.tif
	01973100.tif
	01973101.tif
	01973102.tif
	01973103.tif
	01973104.tif
	01973105.tif
	01973106.tif
	01973107.tif
	01973108.tif
	01973109.tif
	01973110.tif
	01973111.tif
	01973112.tif
	01973113.tif
	01973114.tif
	01973115.tif
	01973116.tif
	01973117.tif
	01973118.tif
	01973119.tif
	01973120.tif
	01973121.tif
	01973122.tif
	01973123.tif
	01973124.tif
	01973125.tif
	01973126.tif
	01973127.tif
	01973128.tif
	01973129.tif
	01973130.tif
	01973131.tif
	01973132.tif
	01973133.tif
	01973134.tif
	01973135.tif
	01973136.tif
	01973137.tif
	01973138.tif
	01973139.tif
	01973140.tif
	01973141.tif
	01973142.tif
	01973143.tif
	01973144.tif
	01973145.tif
	01973146.tif
	01973147.tif
	01973148.tif
	01973149.tif
	01973150.tif
	01973151.tif
	01973152.tif
	01973153.tif
	01973154.tif
	01973155.tif
	01973156.tif
	01973157.tif
	01973158.tif
	01973159.tif
	01973160.tif
	01973161.tif
	01973162.tif
	01973163.tif
	01973164.tif
	01973165.tif
	01973166.tif
	01973167.tif
	01973168.tif
	01973169.tif
	01973170.tif
	01973171.tif
	01973172.tif
	01973173.tif
	01973174.tif
	01973175.tif
	01973176.tif
	01973177.tif
	01973178.tif
	01973179.tif
	01973180.tif
	01973181.tif
	01973182.tif
	01973183.tif
	01973184.tif
	01973185.tif
	01973186.tif
	01973187.tif
	01973188.tif
	01973189.tif
	01973190.tif
	01973191.tif
	01973192.tif
	01973193.tif
	01973194.tif
	01973195.tif
	01973196.tif
	01973197.tif
	01973198.tif
	01973199.tif
	01973200.tif

